Inducible nitric oxide synthase knock-out (iNOS(-/-)) mice are valid models of investigation for the role of iNOS in patho-physiological conditions. There are no available data concerning neuroactive amino acid levels of iNOS(-/-) mice and their behaviour in response to pentylenetetrazole (PTZ). We found no significant differences in the convulsive dose 50 (CD50) between iNOS(-/-) and control (iNOS(+/+)) mice, however, iNOS(-/-) mice reach the kindled status more slowly than control, suggesting that in basal condition the GABA-benzodiazepine inhibitory inputs are unaltered by iNOS mutation. Clear differences between iNOS(+/+) and iNOS(-/-) mice amino acid concentrations were evident both in basal conditions and after kindling. Our results show that aspartate was significantly lower in all brain areas studied except the brain stem whereas glutamate and glutamine were significantly higher in the cortex, hippocampus and brain stem. GABA was slightly and not significantly higher in the cortex, hippocampus and brain stem, whereas taurine was significantly higher in all areas except diencephalon and glycine was significantly lower in the diencephalon and cerebellum. In this context, the inability of iNOS(-/-) mice to increase the NO levels following PTZ administrations indicate that NO might play a pro-epileptogenic role in the genesis and development of some types of epilepsy. Since there is no correlation between neurotransmitter levels and the development of kindling, it is possible to exclude that the difference between the two strains is due to an imbalance between the considered neurotransmitters, and it is then possible that this difference is due to the presence of iNOS, which might be involved in long term plasticity of the brain. (c) 2006 Elsevier Inc. All rights reserved.

Inducible nitric oxide synthase knock-out (iNOS(-/-)) mice are valid models of investigation for the role of iNOS in patho-physiological conditions. There are no available data concerning neuroactive amino acid levels of iNOS(-/-) mice and their behaviour in response to pentylenetetrazole (PTZ). We found no significant differences in the convulsive dose 50 (CD50) between iNOS(-/-) and control (iNOS(+/+)) mice, however, iNOS(-/-) mice reach the kindled status more slowly than control, suggesting that in basal condition the GABA-benzodiazepine inhibitory inputs are unaltered by iNOS mutation. Clear differences between iNOS(+/+) and iNOS(-/-) mice amino acid concentrations were evident both in basal conditions and after kindling. Our results show that aspartate was significantly lower in all brain areas studied except the brain stem whereas glutamate and glutamine were significantly higher in the cortex, hippocampus and brain stem. GABA was slightly and not significantly higher in the cortex, hippocampus and brain stem, whereas taurine was significantly higher in all areas except diencephalon and glycine was significantly lower in the diencephalon and cerebellum. In this context, the inability of iNOS(-/-) mice to increase the NO levels following PTZ administrations indicate that NO might play a pro-epileptogenic role in the genesis and development of some types of epilepsy. Since there is no correlation between neurotransmitter levels and the development of kindling, it is possible to exclude that the difference between the two strains is due to an imbalance between the considered neurotransmitters, and it is then possible that this difference is due to the presence of iNOS, which might be involved in long term plasticity of the brain. (c) 2006 Elsevier Inc. All rights reserved.

Amino acid levels in some brain areas of inducible nitric oxide synthase knock out mouse (iNOS(-/-)) before and after pentylenetetrazole kindling

DE LUCA G;COSTA N;CITRARO R;RUSSO E;DE SARRO G
2006-01-01

Abstract

Inducible nitric oxide synthase knock-out (iNOS(-/-)) mice are valid models of investigation for the role of iNOS in patho-physiological conditions. There are no available data concerning neuroactive amino acid levels of iNOS(-/-) mice and their behaviour in response to pentylenetetrazole (PTZ). We found no significant differences in the convulsive dose 50 (CD50) between iNOS(-/-) and control (iNOS(+/+)) mice, however, iNOS(-/-) mice reach the kindled status more slowly than control, suggesting that in basal condition the GABA-benzodiazepine inhibitory inputs are unaltered by iNOS mutation. Clear differences between iNOS(+/+) and iNOS(-/-) mice amino acid concentrations were evident both in basal conditions and after kindling. Our results show that aspartate was significantly lower in all brain areas studied except the brain stem whereas glutamate and glutamine were significantly higher in the cortex, hippocampus and brain stem. GABA was slightly and not significantly higher in the cortex, hippocampus and brain stem, whereas taurine was significantly higher in all areas except diencephalon and glycine was significantly lower in the diencephalon and cerebellum. In this context, the inability of iNOS(-/-) mice to increase the NO levels following PTZ administrations indicate that NO might play a pro-epileptogenic role in the genesis and development of some types of epilepsy. Since there is no correlation between neurotransmitter levels and the development of kindling, it is possible to exclude that the difference between the two strains is due to an imbalance between the considered neurotransmitters, and it is then possible that this difference is due to the presence of iNOS, which might be involved in long term plasticity of the brain. (c) 2006 Elsevier Inc. All rights reserved.
2006
Inducible nitric oxide synthase knock-out (iNOS(-/-)) mice are valid models of investigation for the role of iNOS in patho-physiological conditions. There are no available data concerning neuroactive amino acid levels of iNOS(-/-) mice and their behaviour in response to pentylenetetrazole (PTZ). We found no significant differences in the convulsive dose 50 (CD50) between iNOS(-/-) and control (iNOS(+/+)) mice, however, iNOS(-/-) mice reach the kindled status more slowly than control, suggesting that in basal condition the GABA-benzodiazepine inhibitory inputs are unaltered by iNOS mutation. Clear differences between iNOS(+/+) and iNOS(-/-) mice amino acid concentrations were evident both in basal conditions and after kindling. Our results show that aspartate was significantly lower in all brain areas studied except the brain stem whereas glutamate and glutamine were significantly higher in the cortex, hippocampus and brain stem. GABA was slightly and not significantly higher in the cortex, hippocampus and brain stem, whereas taurine was significantly higher in all areas except diencephalon and glycine was significantly lower in the diencephalon and cerebellum. In this context, the inability of iNOS(-/-) mice to increase the NO levels following PTZ administrations indicate that NO might play a pro-epileptogenic role in the genesis and development of some types of epilepsy. Since there is no correlation between neurotransmitter levels and the development of kindling, it is possible to exclude that the difference between the two strains is due to an imbalance between the considered neurotransmitters, and it is then possible that this difference is due to the presence of iNOS, which might be involved in long term plasticity of the brain. (c) 2006 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/10061
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact