Nuclear factor (NF)-κB is a master regulator of pro-inflammatory genes and is upregulated in human immunodeficiency virus 1 (HIV-1) infection. Mechanisms underlying the NF-κB deregulation by HIV-1 are relevant for immune dysfunction in AIDS. We report that in single round HIV-1 infection, or single-pulse PMA stimulation, the HIV-1 Tat transactivator activated NF-κB by hijacking the inhibitor IκB-α and by preventing the repressor binding to the NF-κB complex. Moreover, Tat associated with the p65 subunit of NF-κB and increased the p65 DNA-binding affinity and transcriptional activity. The arginine-rich and cysteine-rich domains of Tat were required for IκB-α and p65 association, respectively, and for sustaining the NF-κB activity. Among an array of NF-κB-responsive genes, Tat mostly activated the MIP-1α expression in a p65-dependent manner, and bound to the MIP-1α NF-κB enhancer thus promoting the recruitment of p65 with displacement of IκB-α; similar findings were obtained for the NF-κB-responsive genes CSF3, LTA, NFKBIA and TLR2. Our results support a novel mechanism of NF-κB activation via physical interaction of Tat with IκB-α and p65, and may contribute to further insights into the deregulation of the inflammatory response by HIV-1.
Human immunodeficiency virus-1 Tat activates NF-kappaB via physical interaction with IkappaB-alpha and p65
FIUME G;VECCHIO E;DE LAURENTIIS A;TRIMBOLI F;PALMIERI C;PONTORIERO M;SCIALDONE A;FASANELLA MASCI F;SCALA G;QUINTO I
2012-01-01
Abstract
Nuclear factor (NF)-κB is a master regulator of pro-inflammatory genes and is upregulated in human immunodeficiency virus 1 (HIV-1) infection. Mechanisms underlying the NF-κB deregulation by HIV-1 are relevant for immune dysfunction in AIDS. We report that in single round HIV-1 infection, or single-pulse PMA stimulation, the HIV-1 Tat transactivator activated NF-κB by hijacking the inhibitor IκB-α and by preventing the repressor binding to the NF-κB complex. Moreover, Tat associated with the p65 subunit of NF-κB and increased the p65 DNA-binding affinity and transcriptional activity. The arginine-rich and cysteine-rich domains of Tat were required for IκB-α and p65 association, respectively, and for sustaining the NF-κB activity. Among an array of NF-κB-responsive genes, Tat mostly activated the MIP-1α expression in a p65-dependent manner, and bound to the MIP-1α NF-κB enhancer thus promoting the recruitment of p65 with displacement of IκB-α; similar findings were obtained for the NF-κB-responsive genes CSF3, LTA, NFKBIA and TLR2. Our results support a novel mechanism of NF-κB activation via physical interaction of Tat with IκB-α and p65, and may contribute to further insights into the deregulation of the inflammatory response by HIV-1.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.