Mitophagy is a mechanism that maintains mitochondrial integrity and homeostasis and is thought to promote longevity and reduce the risk of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigate the abundance of mitochondrial reactive oxygen species (ROS), mitochondrial function, and mitophagy in primary fibroblasts from patients with sporadic AD (sAD) and normal healthy controls. The results show increased levels of mitochondrial ROS, changes in mitochondrial morphology, altered bioenergetic properties, and defects in autophagy, mitophagy, and lysosome-mediated degradation pathways in sAD fibroblasts relative to control fibroblasts. Interestingly, lysosome abundance and the staining of lysosomal markers remained high, while the capacity of lysosome-dependent degradation was lower in sAD fibroblasts than in controls fibroblasts. Nicotinamide riboside supplementation decreased mitochondrial ROS, while capacity for lysosomal degradation remained unchanged in sAD fibroblasts relative to healthy control fibroblasts. These findings provide insight into molecular mechanisms involving the dysregulation of lysosome and autophagy/mitophagy pathways that may contribute significantly to clinical signs and pathological features of sAD.

Human fibroblasts from sporadic Alzheimer's disease (AD) patients show mitochondrial alterations and lysosome dysfunction

Grillo E.;Berliocchi L.;
2024-01-01

Abstract

Mitophagy is a mechanism that maintains mitochondrial integrity and homeostasis and is thought to promote longevity and reduce the risk of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigate the abundance of mitochondrial reactive oxygen species (ROS), mitochondrial function, and mitophagy in primary fibroblasts from patients with sporadic AD (sAD) and normal healthy controls. The results show increased levels of mitochondrial ROS, changes in mitochondrial morphology, altered bioenergetic properties, and defects in autophagy, mitophagy, and lysosome-mediated degradation pathways in sAD fibroblasts relative to control fibroblasts. Interestingly, lysosome abundance and the staining of lysosomal markers remained high, while the capacity of lysosome-dependent degradation was lower in sAD fibroblasts than in controls fibroblasts. Nicotinamide riboside supplementation decreased mitochondrial ROS, while capacity for lysosomal degradation remained unchanged in sAD fibroblasts relative to healthy control fibroblasts. These findings provide insight into molecular mechanisms involving the dysregulation of lysosome and autophagy/mitophagy pathways that may contribute significantly to clinical signs and pathological features of sAD.
2024
Alzheimer's disease
Autophagy
Lysosome
Mitochondria
Mitophagy
Oxidative stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/102362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact