Lynch syndrome (LS), also known as Hereditary Non-Polyposis Colorectal Cancer (HNPCC), is an autosomal dominant cancer syndrome which causes about 2–3% of cases of colorectal carcinoma. The development of LS is due to the genetic and epigenetic inactivation of genes involved in the DNA mismatch repair (MMR) system, causing an epiphenomenon known as microsatellite instability (MSI). Despite the fact that the genetics of the vast majority of MSI-positive (MSI+) cancers can be explained, the etiology of this specific subset is still poorly understood. As a possible new mechanism, it has been recently demonstrated that the overexpression of certain microRNAs (miRNAs, miRs), such as miR-155, miR-21, miR-137, can induce MSI or modulate the expression of the genes involved in LS pathogenesis. MiRNAs are small RNA molecules that regulate gene expression at the post-transcriptional level by playing a critical role in the modulation of key oncogenic pathways. Increasing evidence of the link between MSI and miRNAs in LS prompted a deeper investigation into the miRNome involved in these diseases. In this regard, in this study, we discuss the emerging role of miRNAs as crucial players in the onset and progression of LS as well as their potential use as disease biomarkers and therapeutic targets in the current view of precision medicine.

Lynch Syndrome Biopathology and Treatment: The Potential Role of microRNAs in Clinical Practice

Ascrizzi, Serena;Arillotta, Grazia Maria;Grillone, Katia;Signorelli, Stefania;Ali, Asad;Romeo, Caterina;Tassone, Pierfrancesco;Tagliaferri, Pierosandro
2023-01-01

Abstract

Lynch syndrome (LS), also known as Hereditary Non-Polyposis Colorectal Cancer (HNPCC), is an autosomal dominant cancer syndrome which causes about 2–3% of cases of colorectal carcinoma. The development of LS is due to the genetic and epigenetic inactivation of genes involved in the DNA mismatch repair (MMR) system, causing an epiphenomenon known as microsatellite instability (MSI). Despite the fact that the genetics of the vast majority of MSI-positive (MSI+) cancers can be explained, the etiology of this specific subset is still poorly understood. As a possible new mechanism, it has been recently demonstrated that the overexpression of certain microRNAs (miRNAs, miRs), such as miR-155, miR-21, miR-137, can induce MSI or modulate the expression of the genes involved in LS pathogenesis. MiRNAs are small RNA molecules that regulate gene expression at the post-transcriptional level by playing a critical role in the modulation of key oncogenic pathways. Increasing evidence of the link between MSI and miRNAs in LS prompted a deeper investigation into the miRNome involved in these diseases. In this regard, in this study, we discuss the emerging role of miRNAs as crucial players in the onset and progression of LS as well as their potential use as disease biomarkers and therapeutic targets in the current view of precision medicine.
2023
DNA-damage repair
HNPCC
Lynch syndrome
MSI
colorectal cancer
hereditary cancer
hereditary non-polyposis colorectal cancer
miRNAs
microRNAs
non-coding RNAs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/102681
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact