Purpose: Identifying and quantifying coronary artery calcification (CAC) is crucial for preoperative planning, as it helps to estimate both the complexity of the 2D coronary angiography (2DCA) procedure and the risk of developing intraoperative complications. Despite the relevance, the actual practice relies upon visual inspection of the 2DCA image frames by clinicians. This procedure is prone to inaccuracies due to the poor contrast and small size of the CAC; moreover, it is dependent on the physician’s experience. To address this issue, we developed a workflow to assist clinicians in identifying CAC within 2DCA using data from 44 image acquisitions across 14 patients. Methods: Our workflow consists of three stages. In the first stage, a classification backbone based on ResNet-18 is applied to guide the CAC identification by extracting relevant features from 2DCA frames. In the second stage, a U-Net decoder architecture, mirroring the encoding structure of the ResNet-18, is employed to identify the regions of interest (ROI) of the CAC. Eventually, a post-processing step refines the results to obtain the final ROI. The workflow was evaluated using a leave-out cross-validation. Results: The proposed method outperformed the comparative methods by achieving an F1-score for the classification step of 0.87 (0.77-0.94) (median ± quartiles), while for the CAC identification step the intersection over minimum (IoM) was 0.64 (0.46-0.86) (median ± quartiles). Conclusion: This is the first attempt to propose a clinical decision support system to assist the identification of CAC within 2DCA. The proposed workflow holds the potential to improve both the accuracy and efficiency of CAC quantification, with promising clinical applications. As future work, the concurrent use of multiple auxiliary tasks could be explored to further improve the segmentation performance.

A multi-model deep learning approach for the identification of coronary artery calcifications within 2D coronary angiography images

Zaffino, Paolo;De Rosa, Salvatore;Calimeri, Francesco;Spadea, Maria Francesca
2025-01-01

Abstract

Purpose: Identifying and quantifying coronary artery calcification (CAC) is crucial for preoperative planning, as it helps to estimate both the complexity of the 2D coronary angiography (2DCA) procedure and the risk of developing intraoperative complications. Despite the relevance, the actual practice relies upon visual inspection of the 2DCA image frames by clinicians. This procedure is prone to inaccuracies due to the poor contrast and small size of the CAC; moreover, it is dependent on the physician’s experience. To address this issue, we developed a workflow to assist clinicians in identifying CAC within 2DCA using data from 44 image acquisitions across 14 patients. Methods: Our workflow consists of three stages. In the first stage, a classification backbone based on ResNet-18 is applied to guide the CAC identification by extracting relevant features from 2DCA frames. In the second stage, a U-Net decoder architecture, mirroring the encoding structure of the ResNet-18, is employed to identify the regions of interest (ROI) of the CAC. Eventually, a post-processing step refines the results to obtain the final ROI. The workflow was evaluated using a leave-out cross-validation. Results: The proposed method outperformed the comparative methods by achieving an F1-score for the classification step of 0.87 (0.77-0.94) (median ± quartiles), while for the CAC identification step the intersection over minimum (IoM) was 0.64 (0.46-0.86) (median ± quartiles). Conclusion: This is the first attempt to propose a clinical decision support system to assist the identification of CAC within 2DCA. The proposed workflow holds the potential to improve both the accuracy and efficiency of CAC quantification, with promising clinical applications. As future work, the concurrent use of multiple auxiliary tasks could be explored to further improve the segmentation performance.
2025
Clinical decision support system
Coronary angiography
Coronary artery calcification
Deep learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/106820
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact