Tumoral angiogenesis is mainly an endothelial cell-mediated process, which has been largely demonstrated to take on a crucial role in tumor growth, invasion, and metastasis. Thus, tumor-associated neovasculature represents a pivotal target in cancer therapy. Several mechanisms take part in the genesis of this pathological vasculature, most notably neoangiogenesis and postnatal vasculogenesis. These processes may also play a critical role in the resistance to anti-angiogenic agents, leading to tumor progression. In particular, vasculogenesis is mediated by endothelial progenitor cells (EPCs), which include cellular subpopulations with different functional capacities. EPCs are able to proliferate, migrate, and differentiate into mature endothelial cells (ECs) in response to tumor growth, promoting the "angiogenic switch" and, consequently, inducing the invasion and metastases of cancer cells. Therefore, vasculogenesis mediated by EPCs represents an intriguing therapeutic target, both in early and late stages of cancer progression, thereby working as potential landmark for synthesizing novel and more effective anti-angiogenic drugs. Here, we aim to focus and to summarize several biological features of EPCs and EPC-based therapeutic approach with potential translation in human clinical trials.

Targeting endothelial progenitor cells in cancer as a novel biomarker and anti-angiogenic therapy.

Ammendola M;De Sarro G;Russo E;Sammarco G
2015-01-01

Abstract

Tumoral angiogenesis is mainly an endothelial cell-mediated process, which has been largely demonstrated to take on a crucial role in tumor growth, invasion, and metastasis. Thus, tumor-associated neovasculature represents a pivotal target in cancer therapy. Several mechanisms take part in the genesis of this pathological vasculature, most notably neoangiogenesis and postnatal vasculogenesis. These processes may also play a critical role in the resistance to anti-angiogenic agents, leading to tumor progression. In particular, vasculogenesis is mediated by endothelial progenitor cells (EPCs), which include cellular subpopulations with different functional capacities. EPCs are able to proliferate, migrate, and differentiate into mature endothelial cells (ECs) in response to tumor growth, promoting the "angiogenic switch" and, consequently, inducing the invasion and metastases of cancer cells. Therefore, vasculogenesis mediated by EPCs represents an intriguing therapeutic target, both in early and late stages of cancer progression, thereby working as potential landmark for synthesizing novel and more effective anti-angiogenic drugs. Here, we aim to focus and to summarize several biological features of EPCs and EPC-based therapeutic approach with potential translation in human clinical trials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/1072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact