Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventually death. The pathogenesis of ALS is influenced by genetic factors, environmental factors, and age-related dysfunctions. These factors, taken together, are responsible for sporadic cases of ALS, which account for approximately 85–90% of ALS cases, while familial ALS accounts for the remaining 10–15% of cases, usually with dominant traits. Despite advances in understanding and studying the disease, the cause of the onset of ALS remains unknown. Emerging evidence suggests that non-coding RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play crucial roles in the pathogenesis of the disease. An abnormal expression of these molecules is implicated in various ALS-related processes, including motor neuron survival, protein aggregation, and inflammation. Here, we describe the dysregulation of non-coding RNAs in the pathogenic mechanism of ALS, highlighting the potential roles of miRNAs, lncRNAs, and circRNAs as biomarkers or therapeutic targets to examine the progression of the disease.
The Role of Non-Coding RNAs in ALS
Falduti, Alessandra;Lo Feudo, Elisa;Rocca, Valentina;Iuliano, Rodolfo
2025-01-01
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons, leading to muscle weakness, paralysis, and eventually death. The pathogenesis of ALS is influenced by genetic factors, environmental factors, and age-related dysfunctions. These factors, taken together, are responsible for sporadic cases of ALS, which account for approximately 85–90% of ALS cases, while familial ALS accounts for the remaining 10–15% of cases, usually with dominant traits. Despite advances in understanding and studying the disease, the cause of the onset of ALS remains unknown. Emerging evidence suggests that non-coding RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play crucial roles in the pathogenesis of the disease. An abnormal expression of these molecules is implicated in various ALS-related processes, including motor neuron survival, protein aggregation, and inflammation. Here, we describe the dysregulation of non-coding RNAs in the pathogenic mechanism of ALS, highlighting the potential roles of miRNAs, lncRNAs, and circRNAs as biomarkers or therapeutic targets to examine the progression of the disease.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.