Genetic animal models have contributed significantly to our understanding of epilepsy causes. Lethargic mice are considered a valid model of absence epilepsy, which have been shown to possess behavioral, electrographic and pharmacological profiles similar to those of humans with absence epilepsies. Single gene mutations that comprise the beta(4) subunit of voltage-sensitive Ca2+ channels underlie the spontaneous discharges of the absence, non-convulsive seizures of lethargic mice. There are no available data concerning how the mutant channels actually behave at terminals in response to chemical activation by subconvulsant stimulation with pentylenetetrazole. In this study, we found no significant difference in the convulsive dose 50 between lethargic and control mice. Lethargic mice showed a more rapid development of kindling to pentylenetetrazole than control animals. No significant differences were observed between the groups of mice rechallenged with pentylenetetrazole 30 or 60 days after the end of the chronic treatment. Marked differences in brain amino acid levels were found between the two strains of mice in basal conditions and after kindling. In conclusion, our results indicate that lethargic mice show a range of biochemical and behavioral changes, correlated in particular with a higher susceptibility to develop kindled seizures. (C) 2005 Elsevier Inc. All rights reserved.

Genetic animal models have contributed significantly to our understanding of epilepsy causes. Lethargic mice are considered a valid model of absence epilepsy, which have been shown to possess behavioral, electrographic and pharmacological profiles similar to those of humans with absence epilepsies. Single gene mutations that comprise the beta(4) subunit of voltage-sensitive Ca2+ channels underlie the spontaneous discharges of the absence, non-convulsive seizures of lethargic mice. There are no available data concerning how the mutant channels actually behave at terminals in response to chemical activation by subconvulsant stimulation with pentylenetetrazole. In this study, we found no significant difference in the convulsive dose 50 between lethargic and control mice. Lethargic mice showed a more rapid development of kindling to pentylenetetrazole than control animals. No significant differences were observed between the groups of mice rechallenged with pentylenetetrazole 30 or 60 days after the end of the chronic treatment. Marked differences in brain amino acid levels were found between the two strains of mice in basal conditions and after kindling. In conclusion, our results indicate that lethargic mice show a range of biochemical and behavioral changes, correlated in particular with a higher susceptibility to develop kindled seizures. (C) 2005 Elsevier Inc. All rights reserved.

Amino acid levels in some lethargic mouse brain areas before and after pentylenetetrazole kindling

Donato Di Paola E;Rotiroti D;Russo E;De Sarro G
2005-01-01

Abstract

Genetic animal models have contributed significantly to our understanding of epilepsy causes. Lethargic mice are considered a valid model of absence epilepsy, which have been shown to possess behavioral, electrographic and pharmacological profiles similar to those of humans with absence epilepsies. Single gene mutations that comprise the beta(4) subunit of voltage-sensitive Ca2+ channels underlie the spontaneous discharges of the absence, non-convulsive seizures of lethargic mice. There are no available data concerning how the mutant channels actually behave at terminals in response to chemical activation by subconvulsant stimulation with pentylenetetrazole. In this study, we found no significant difference in the convulsive dose 50 between lethargic and control mice. Lethargic mice showed a more rapid development of kindling to pentylenetetrazole than control animals. No significant differences were observed between the groups of mice rechallenged with pentylenetetrazole 30 or 60 days after the end of the chronic treatment. Marked differences in brain amino acid levels were found between the two strains of mice in basal conditions and after kindling. In conclusion, our results indicate that lethargic mice show a range of biochemical and behavioral changes, correlated in particular with a higher susceptibility to develop kindled seizures. (C) 2005 Elsevier Inc. All rights reserved.
2005
Genetic animal models have contributed significantly to our understanding of epilepsy causes. Lethargic mice are considered a valid model of absence epilepsy, which have been shown to possess behavioral, electrographic and pharmacological profiles similar to those of humans with absence epilepsies. Single gene mutations that comprise the beta(4) subunit of voltage-sensitive Ca2+ channels underlie the spontaneous discharges of the absence, non-convulsive seizures of lethargic mice. There are no available data concerning how the mutant channels actually behave at terminals in response to chemical activation by subconvulsant stimulation with pentylenetetrazole. In this study, we found no significant difference in the convulsive dose 50 between lethargic and control mice. Lethargic mice showed a more rapid development of kindling to pentylenetetrazole than control animals. No significant differences were observed between the groups of mice rechallenged with pentylenetetrazole 30 or 60 days after the end of the chronic treatment. Marked differences in brain amino acid levels were found between the two strains of mice in basal conditions and after kindling. In conclusion, our results indicate that lethargic mice show a range of biochemical and behavioral changes, correlated in particular with a higher susceptibility to develop kindled seizures. (C) 2005 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/11032
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact