The nuclear factor-kappaB (NF-kappaB) is a transcription factor that plays a pivotal role in the induction of genes involved in the response to injury and inflammation. Dithiocarbamates are antioxidants that are potent inhibitors of NF-kappaB, This study tested the hypothesis that pyrrolidine dithiocarbamate (PDTC) attenuates experimental acute pancreatitis. Intraperitoneal injection of cerulein in mice resulted in severe, acute pancreatitis characterized by edema, neutrophil infiltration, tissue hemorrhage and necrosis, and elevated serum levels of amylase and lipase. Infiltration of pancreatic and lung tissue with neutrophils (measured as increase in myeloperoxidase activity) was associated with enhanced lipid peroxidation (increased tissue levels of malondialdehyde). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for nitrotyrosine and intracellular adhesion molecule-1 in the pancreas and lung of cerulein-treated mice. In contrast, the degree of 1) pancreas and lung injury, 2) upregulation/expression of intracellular adhesion molecule-1, 3) staining for nitrotyrosine, and 4) lipid peroxidation was markedly reduced by pretreatment with PDTC. This study demonstrates that prevention of the activation of NF-kappaB by PDTC ameliorates the tissue injury associated with experimental murine acute pancreatitis and provides an important insight into the molecular biology of acute pancreatitis.

Pyrrolidine dithiocarbamate reduces the severity of cerulein-induced murine acute pancreatitis

Britti D;
2003-01-01

Abstract

The nuclear factor-kappaB (NF-kappaB) is a transcription factor that plays a pivotal role in the induction of genes involved in the response to injury and inflammation. Dithiocarbamates are antioxidants that are potent inhibitors of NF-kappaB, This study tested the hypothesis that pyrrolidine dithiocarbamate (PDTC) attenuates experimental acute pancreatitis. Intraperitoneal injection of cerulein in mice resulted in severe, acute pancreatitis characterized by edema, neutrophil infiltration, tissue hemorrhage and necrosis, and elevated serum levels of amylase and lipase. Infiltration of pancreatic and lung tissue with neutrophils (measured as increase in myeloperoxidase activity) was associated with enhanced lipid peroxidation (increased tissue levels of malondialdehyde). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for nitrotyrosine and intracellular adhesion molecule-1 in the pancreas and lung of cerulein-treated mice. In contrast, the degree of 1) pancreas and lung injury, 2) upregulation/expression of intracellular adhesion molecule-1, 3) staining for nitrotyrosine, and 4) lipid peroxidation was markedly reduced by pretreatment with PDTC. This study demonstrates that prevention of the activation of NF-kappaB by PDTC ameliorates the tissue injury associated with experimental murine acute pancreatitis and provides an important insight into the molecular biology of acute pancreatitis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/11079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 58
social impact