Microarray platforms enable the investigation of allelic variants that may be correlated to phenotypes. Among those, the Affymetrix DMET (Drug Metabolism Enzymes and Transporters) platform enables the simultaneous investigation of all the genes that are related to drug absorption, distribution, metabolism and excretion (ADME). Although recent studies demonstrated the effectiveness of the use of DMET data for studying drug response or toxicity in clinical studies, there is a lack of tools for the automatic analysis of DMET data. In a previous work we developed DMET-Analyzer, a methodology and a supporting platform able to automatize the statistical study of allelic variants, that has been validated in several clinical studies. Although DMET-Analyzer is able to correlate a single variant for each probe (related to a portion of a gene) through the use of the Fisher test, it is unable to discover multiple associations among allelic variants, due to its underlying statistic analysis strategy that focuses on a single variant for each time. To overcome those limitations, here we propose a new analysis methodology for DMET data based on Association Rules mining, and an efficient implementation of this methodology, named DMET-Miner. DMET-Miner extends the DMET-Analyzer tool with data mining capabilities and correlates the presence of a set of allelic variants with the conditions of patient’s samples by exploiting association rules. To face the high number of frequent itemsets generated when considering large clinical studies based on DMET data, DMET-Miner uses an efficient data structure and implements an optimized search strategy that reduces the search space and the execution time. Preliminary experiments on synthetic DMET datasets, show how DMET-Miner outperforms off-the-shelf data mining suites such as the FP-Growth algorithms available in Weka and RapidMiner. To demonstrate the biological relevance of the extracted association rules and the effectiveness of the proposed approach from a medical point of view, some preliminary studies on a real clinical dataset are currently under medical investigation.

DMET-Miner: Efficient discovery of association rules from pharmacogenomic dataG Agapito, PH Guzzi, M CannataroJournal of biomedical informatics 56, 273-283

DMET-Miner: Efficient discovery of association rules from pharmacogenomic data

Agapito G;Guzzi PH;Cannataro M
2015-01-01

Abstract

Microarray platforms enable the investigation of allelic variants that may be correlated to phenotypes. Among those, the Affymetrix DMET (Drug Metabolism Enzymes and Transporters) platform enables the simultaneous investigation of all the genes that are related to drug absorption, distribution, metabolism and excretion (ADME). Although recent studies demonstrated the effectiveness of the use of DMET data for studying drug response or toxicity in clinical studies, there is a lack of tools for the automatic analysis of DMET data. In a previous work we developed DMET-Analyzer, a methodology and a supporting platform able to automatize the statistical study of allelic variants, that has been validated in several clinical studies. Although DMET-Analyzer is able to correlate a single variant for each probe (related to a portion of a gene) through the use of the Fisher test, it is unable to discover multiple associations among allelic variants, due to its underlying statistic analysis strategy that focuses on a single variant for each time. To overcome those limitations, here we propose a new analysis methodology for DMET data based on Association Rules mining, and an efficient implementation of this methodology, named DMET-Miner. DMET-Miner extends the DMET-Analyzer tool with data mining capabilities and correlates the presence of a set of allelic variants with the conditions of patient’s samples by exploiting association rules. To face the high number of frequent itemsets generated when considering large clinical studies based on DMET data, DMET-Miner uses an efficient data structure and implements an optimized search strategy that reduces the search space and the execution time. Preliminary experiments on synthetic DMET datasets, show how DMET-Miner outperforms off-the-shelf data mining suites such as the FP-Growth algorithms available in Weka and RapidMiner. To demonstrate the biological relevance of the extracted association rules and the effectiveness of the proposed approach from a medical point of view, some preliminary studies on a real clinical dataset are currently under medical investigation.
2015
DMET-Miner: Efficient discovery of association rules from pharmacogenomic dataG Agapito, PH Guzzi, M CannataroJournal of biomedical informatics 56, 273-283
Personalized medicine; Single nucleotide polymorphism; Frequent itemset mining; Association rules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/11326
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 36
social impact