Murine models of human multiple myeloma (MM) are key tools for the study of disease biology as well as for investigation and selection of novel candidate therapeutics for clinical translation. In the last years, a variety of pre-clinical models have been generated to recapitulate a wide spectrum of biological features of MM. These systems range from spontaneous or transgenic models of murine MM, to subcutaneous or orthothopic xenografts of human MM cell lines in immune compromised animals, to platform allowing the engraftment of primary/bone marrow-dependent MM cells within a human bone marrow milieu to fully recapitulate human disease. Selecting the right model for specific pre-clinical research is essential for the successful completion of investigation. We here review recent and most known pre-clinical murine, transgenic and humanized models of MM, focusing on major advantages and/or weaknesses in the light of different research aims.

Mouse models of Multiple Myeloma: technologic platforms and perspectives

Tassone P;Tagliaferri P;GREMBIALE, Rosa Daniela;ROSSI, Marco
2018-01-01

Abstract

Murine models of human multiple myeloma (MM) are key tools for the study of disease biology as well as for investigation and selection of novel candidate therapeutics for clinical translation. In the last years, a variety of pre-clinical models have been generated to recapitulate a wide spectrum of biological features of MM. These systems range from spontaneous or transgenic models of murine MM, to subcutaneous or orthothopic xenografts of human MM cell lines in immune compromised animals, to platform allowing the engraftment of primary/bone marrow-dependent MM cells within a human bone marrow milieu to fully recapitulate human disease. Selecting the right model for specific pre-clinical research is essential for the successful completion of investigation. We here review recent and most known pre-clinical murine, transgenic and humanized models of MM, focusing on major advantages and/or weaknesses in the light of different research aims.
2018
SCID, SCID-hu, SCID-synth-hu, mouse models, multiple myeloma
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/1211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact