During diverse pathological conditions, vascular smooth muscle cells (SMCs) characteristically change from a quiescent, contractile phenotype to a proliferative, synthetic state, migrate toward the intima, and synthesize excess extracellular matrix. Although reactive oxygen species (ROS) are generally considered to be toxic to cells, recent evidence suggests that they may also modulate multiple signaling pathways. The vascular system contains several sources of ROS, among which NADPH oxidases (NOXes) have been shown to take an important part in the regulation of cell function, with effects on growth and proliferation. In the present study, the authors investigate the ultrastructural features of SMCs and the expression profile of Nox4 in healthy and atherosclerotic human aorta to explore the possibility of a relationship between Nox4 and SMCs differentiation state. The data extend at the level of immunoelectron microscopy previous observations, demonstrating for the first time the precise distribution and the differential expression of Nox4 in the morphologically distinct SMC types of healthy and diseased human aorta

Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta

Donato G;
2011-01-01

Abstract

During diverse pathological conditions, vascular smooth muscle cells (SMCs) characteristically change from a quiescent, contractile phenotype to a proliferative, synthetic state, migrate toward the intima, and synthesize excess extracellular matrix. Although reactive oxygen species (ROS) are generally considered to be toxic to cells, recent evidence suggests that they may also modulate multiple signaling pathways. The vascular system contains several sources of ROS, among which NADPH oxidases (NOXes) have been shown to take an important part in the regulation of cell function, with effects on growth and proliferation. In the present study, the authors investigate the ultrastructural features of SMCs and the expression profile of Nox4 in healthy and atherosclerotic human aorta to explore the possibility of a relationship between Nox4 and SMCs differentiation state. The data extend at the level of immunoelectron microscopy previous observations, demonstrating for the first time the precise distribution and the differential expression of Nox4 in the morphologically distinct SMC types of healthy and diseased human aorta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/1933
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact