This paper provides some sufficient conditions for the stabilization of nonlinear quadratic systems via output feedback. The main contribution consists of a design procedure which enables to find a dynamic output feedback controller guaranteeing for the closed-loop system: i) the local asymptotic stability of the zero equilibrium point; ii) the inclusion of a given polytopic region into the domain of attraction of the zero equilibrium point. This design procedure is formulated in terms of a Linear Matrix Inequalities (LMIs) feasibility problem, which can be efficiently solved via available optimization algorithms. The effectiveness of the proposed methodology is shown through a numerical example.
Output Feedback Control of Nonlinear Quadratic Systems
Amato F.;Ariola M.;Cosentino C.;MEROLA A
2010-01-01
Abstract
This paper provides some sufficient conditions for the stabilization of nonlinear quadratic systems via output feedback. The main contribution consists of a design procedure which enables to find a dynamic output feedback controller guaranteeing for the closed-loop system: i) the local asymptotic stability of the zero equilibrium point; ii) the inclusion of a given polytopic region into the domain of attraction of the zero equilibrium point. This design procedure is formulated in terms of a Linear Matrix Inequalities (LMIs) feasibility problem, which can be efficiently solved via available optimization algorithms. The effectiveness of the proposed methodology is shown through a numerical example.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.