Type 2 Diabetes (T2D) is strongly associated with obesity and inflammation. Toll-like receptor-4 (TLR-4) is the major pro-inflammatory pathway with its ligands and downstream products increased systemically in T2D and in at-risk individuals. Detailed mechanisms of the complex proinflammatory response in pancreatic islets remain unknown. In isolated human islets LPS induced IL-1β, IL-6, IL-8 and TNF production in a TLR4-dependent manner and severely impaired β-cell survival and function. IL-6 antagonism improved β-cell function. IL-8, which was identified specifically in α-cells, initiated monocyte migration, a process fully blocked by IL-8 neutralization. The TLR4 response was potentiated in obese donors; with higher IL-1β, IL-6 and IL-8 expression than in non-obese donors. TLR4 activation leads to a complex multi-cellular inflammatory response in human islets, which involves β-cell failure, cytokine production and macrophage recruitment to islets. In obesity, the amplified TLR4 response may potentiate β-cell damage and accelerate diabetes progression.

TLR4 triggered complex inflammation in human pancreatic islets

Savino R;Terracciano R;
2019-01-01

Abstract

Type 2 Diabetes (T2D) is strongly associated with obesity and inflammation. Toll-like receptor-4 (TLR-4) is the major pro-inflammatory pathway with its ligands and downstream products increased systemically in T2D and in at-risk individuals. Detailed mechanisms of the complex proinflammatory response in pancreatic islets remain unknown. In isolated human islets LPS induced IL-1β, IL-6, IL-8 and TNF production in a TLR4-dependent manner and severely impaired β-cell survival and function. IL-6 antagonism improved β-cell function. IL-8, which was identified specifically in α-cells, initiated monocyte migration, a process fully blocked by IL-8 neutralization. The TLR4 response was potentiated in obese donors; with higher IL-1β, IL-6 and IL-8 expression than in non-obese donors. TLR4 activation leads to a complex multi-cellular inflammatory response in human islets, which involves β-cell failure, cytokine production and macrophage recruitment to islets. In obesity, the amplified TLR4 response may potentiate β-cell damage and accelerate diabetes progression.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/2198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact