The present disclosure is generally related to reducing the development of diseases related to salt and water balance (e.g., hydrocephalus, hypertension). Particularly, it has been found that, in the brain, inhibition of serum glucocorticoid induced kinase 1 (SGK1) inhibits transepithelial ion transport stimulated by the activation of the transient receptor potential cation channel subfamily V member 4 (TRPV4), thereby inhibiting the production of cerebrospinal fluid (CSF) [0007] Additionally, it has been found that inhibition of SGK1 in the kidney cells, which contain the epithelial sodium channel (ENaC), inhibits sodium transport in a reabsorptive direction which, in the body, would inhibit sodium and water movement from the kidney filtrate into the blood. In one embodiment, inhibition of SGK1 is obtained by the SGK1 inhibitor, SI 113. [0008] Accordingly, in one aspect, the present disclosure is directed to a method for treating a salt and water balance disease in a subject in need thereof, the method comprising: administering an amount of a serum glucocorticoid induced kinase 1 (SGK1) inhibitor to the subject. [0009] In another aspect, the present disclosure is directed to a method of reducing cerebrospinal fluid (CSF) production in a subject in need thereof, the method comprising: administering an amount of a serum glucocorticoid induced kinase 1 (SGK1) inhibitor to the subject. [0010] In yet another aspect, the present disclosure is directed to a method of inhibiting transepithelial ion transport in a subject in need thereof, the method comprising: administering an amount of a serum glucocorticoid induced kinase 1 (SGK1) inhibitor to the subject.

METHODS OF INHIBITING SERUM GLUCOCORTICOID INDUCED KINASE 1 (SGK1) AS A TREATMENT FOR SALT AND WATER BALANCE DISEASES

PERROTTI N;
2018-01-01

Abstract

The present disclosure is generally related to reducing the development of diseases related to salt and water balance (e.g., hydrocephalus, hypertension). Particularly, it has been found that, in the brain, inhibition of serum glucocorticoid induced kinase 1 (SGK1) inhibits transepithelial ion transport stimulated by the activation of the transient receptor potential cation channel subfamily V member 4 (TRPV4), thereby inhibiting the production of cerebrospinal fluid (CSF) [0007] Additionally, it has been found that inhibition of SGK1 in the kidney cells, which contain the epithelial sodium channel (ENaC), inhibits sodium transport in a reabsorptive direction which, in the body, would inhibit sodium and water movement from the kidney filtrate into the blood. In one embodiment, inhibition of SGK1 is obtained by the SGK1 inhibitor, SI 113. [0008] Accordingly, in one aspect, the present disclosure is directed to a method for treating a salt and water balance disease in a subject in need thereof, the method comprising: administering an amount of a serum glucocorticoid induced kinase 1 (SGK1) inhibitor to the subject. [0009] In another aspect, the present disclosure is directed to a method of reducing cerebrospinal fluid (CSF) production in a subject in need thereof, the method comprising: administering an amount of a serum glucocorticoid induced kinase 1 (SGK1) inhibitor to the subject. [0010] In yet another aspect, the present disclosure is directed to a method of inhibiting transepithelial ion transport in a subject in need thereof, the method comprising: administering an amount of a serum glucocorticoid induced kinase 1 (SGK1) inhibitor to the subject.
2018
SGK1; salt balance; water balance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/22272
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact