N-Acetyl-l-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives were designed and synthesized as potential noncompetitive AMPA receptor antagonists on the basis of molecular modeling studies. Sound-induced seizure testing showed that this class of compounds possessed anticonvulsant properties. In particular, 10c was more potent than talampanel (2), a noncompetitive AMPA receptor antagonist currently being investigated in phase III trials as an antiepileptic agent. Furthermore, electrophysiological studies indicated that 10c was a highly effective noncompetitive-type modulator of the AMPA receptor.

N-Acetyl-l-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives were designed and synthesized as potential noncompetitive AMPA receptor antagonists on the basis of molecular modeling studies. Sound-induced seizure testing showed that this class of compounds possessed anticonvulsant properties. In particular, 10c was more potent than talampanel (2), a noncompetitive AMPA receptor antagonist currently being investigated in phase III trials as an antiepileptic agent. Furthermore, electrophysiological studies indicated that 10c was a highly effective noncompetitive-type modulator of the AMPA receptor.

Discovery of a novel and highly potent noncompetitive AMPA receptor antagonist

De Sarro G;Russo E;
2003-01-01

Abstract

N-Acetyl-l-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives were designed and synthesized as potential noncompetitive AMPA receptor antagonists on the basis of molecular modeling studies. Sound-induced seizure testing showed that this class of compounds possessed anticonvulsant properties. In particular, 10c was more potent than talampanel (2), a noncompetitive AMPA receptor antagonist currently being investigated in phase III trials as an antiepileptic agent. Furthermore, electrophysiological studies indicated that 10c was a highly effective noncompetitive-type modulator of the AMPA receptor.
2003
N-Acetyl-l-aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives were designed and synthesized as potential noncompetitive AMPA receptor antagonists on the basis of molecular modeling studies. Sound-induced seizure testing showed that this class of compounds possessed anticonvulsant properties. In particular, 10c was more potent than talampanel (2), a noncompetitive AMPA receptor antagonist currently being investigated in phase III trials as an antiepileptic agent. Furthermore, electrophysiological studies indicated that 10c was a highly effective noncompetitive-type modulator of the AMPA receptor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/4500
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 84
social impact