Although corticosteroids have been used for a long time as a very effective therapy of airway inflammatory diseases such as asthma, only recently the molecular basis of their mechanism of action has begun to be elucidated. These hormones exert their biological and pharmacological actions by binding to cytoplasmic receptors that, upon activation, translocate to the nucleus where they interact with specific genomic sequences thus modulating gene expression. However, many glucocorticoid effects responsible for their anti-inflammatory and anti-asthmatic activity take place irrespectively of receptor binding to DNA. In particular, ligand-bound glucocorticoid receptors can repress several different pro-inflammatory genes by physically associating, via protein-protein interactions, with various transcription factors and with the macromolecular complexes implicated in regulation of chromatin structure and function. In this regard, an important role is played by the influences of corticosteroids on the intrinsic histone acetyltransferase and deacetylase functions of coactivators and corepressors, respectively. Furthermore, the signal transduction pathways mediated by mitogen-activated protein kinases are newly recognized, key targets of glucocorticoids. Indeed, these enzymatic cascades are crucially involved in the regulation of gene expression in that they are essential for the activity of a high number of transcription factors. Therefore, the recent advances made in such a rapidly growing research field are providing new insights into the mode of action of corticosteroids, thereby also unveiling novel promising therapeutic strategies directly targeted to the molecular events underlying the inflammatory, immune, and apoptotic processes implicated in the pathogenesis of asthma and other airway diseases. (C) 2002 Elsevier Science Inc. All rights reserved.

Molecular mechanisms of corticosteroid actions in chronic inflammatory airway diseases

Pelaia G;Cuda G
2003-01-01

Abstract

Although corticosteroids have been used for a long time as a very effective therapy of airway inflammatory diseases such as asthma, only recently the molecular basis of their mechanism of action has begun to be elucidated. These hormones exert their biological and pharmacological actions by binding to cytoplasmic receptors that, upon activation, translocate to the nucleus where they interact with specific genomic sequences thus modulating gene expression. However, many glucocorticoid effects responsible for their anti-inflammatory and anti-asthmatic activity take place irrespectively of receptor binding to DNA. In particular, ligand-bound glucocorticoid receptors can repress several different pro-inflammatory genes by physically associating, via protein-protein interactions, with various transcription factors and with the macromolecular complexes implicated in regulation of chromatin structure and function. In this regard, an important role is played by the influences of corticosteroids on the intrinsic histone acetyltransferase and deacetylase functions of coactivators and corepressors, respectively. Furthermore, the signal transduction pathways mediated by mitogen-activated protein kinases are newly recognized, key targets of glucocorticoids. Indeed, these enzymatic cascades are crucially involved in the regulation of gene expression in that they are essential for the activity of a high number of transcription factors. Therefore, the recent advances made in such a rapidly growing research field are providing new insights into the mode of action of corticosteroids, thereby also unveiling novel promising therapeutic strategies directly targeted to the molecular events underlying the inflammatory, immune, and apoptotic processes implicated in the pathogenesis of asthma and other airway diseases. (C) 2002 Elsevier Science Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/4595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 82
social impact