Human immunodeficiency virus type 1 (HIV-1) infection is associated with severe psoriasis, B cell lymphoma, and Kaposi's sarcoma. A deregulated production of interleukin-6 (IL6) has been implicated in the pathogenesis of these diseases. The molecular mechanisms underlying the abnormal IL6 secretion of HIV-1-infected cells may include transactivation of the IL6 gene by HIV-1. Here we report the molecular mechanisms of Tat activity on the expression of the IL6 gene. By using 5' deletion mutants of pIL6Pr-CAT and using IL6:HIV-1-LTR hybrid constructs where discrete regions of the IL6 promoter replaced the TAR sequence in HIV-1 LTR, we identified a short sequence of the 5'-untranslated region of the IL6 mRNA that is required for Tat to trans-activate the IL6 promoter. This sequence acquires a stem-loop structure and includes a UCU sequence that binds to Tat and is necessary for full trans-activation. In addition, we provide the evidence that Tat can function by enhancing the CAAT enhancer-binding protein (C/EBP) DNA binding activity and is able to complex with in vitro translated C/EBPbeta, which is a major mediator of IL6 promoter function. By using the yeast two-hybrid system and immunoprecipitation, we observed that the interaction of Tat with C/EBP proteins also occurred in vivo. The data are consistent with the possibility that Tat may function on heterologous genes by interacting with RNA structures possibly present in a large number of cellular and viral genes. In addition, Tat may function by protein-protein interactions, leading to the generation of heterodimers with specific transcription factors.

HIV-1 Tat induces the expression of the interleukin-6 gene (IL-6) by binding to the IL-6 leader RNA and by interacting with CAAT enhancer-binding protein b (NF-IL6) transcription factors

QUINTO I;
1997-01-01

Abstract

Human immunodeficiency virus type 1 (HIV-1) infection is associated with severe psoriasis, B cell lymphoma, and Kaposi's sarcoma. A deregulated production of interleukin-6 (IL6) has been implicated in the pathogenesis of these diseases. The molecular mechanisms underlying the abnormal IL6 secretion of HIV-1-infected cells may include transactivation of the IL6 gene by HIV-1. Here we report the molecular mechanisms of Tat activity on the expression of the IL6 gene. By using 5' deletion mutants of pIL6Pr-CAT and using IL6:HIV-1-LTR hybrid constructs where discrete regions of the IL6 promoter replaced the TAR sequence in HIV-1 LTR, we identified a short sequence of the 5'-untranslated region of the IL6 mRNA that is required for Tat to trans-activate the IL6 promoter. This sequence acquires a stem-loop structure and includes a UCU sequence that binds to Tat and is necessary for full trans-activation. In addition, we provide the evidence that Tat can function by enhancing the CAAT enhancer-binding protein (C/EBP) DNA binding activity and is able to complex with in vitro translated C/EBPbeta, which is a major mediator of IL6 promoter function. By using the yeast two-hybrid system and immunoprecipitation, we observed that the interaction of Tat with C/EBP proteins also occurred in vivo. The data are consistent with the possibility that Tat may function on heterologous genes by interacting with RNA structures possibly present in a large number of cellular and viral genes. In addition, Tat may function by protein-protein interactions, leading to the generation of heterodimers with specific transcription factors.
1997
HIV-1; Tat; IL-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/4879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 103
  • ???jsp.display-item.citation.isi??? 98
social impact