Vasopressin (AVP) is a hormone with antidiuretic properties that is also involved in cellular proliferation of breast, pulmonary, and pancreatic neoplasias, attributable to the interaction with specific receptors, among which is the V2-R. Using a culture model of CAKI-2 and A498 cancer cells, our study aimed to verify if renal carcinoma cells also express V2-R and whether receptor activation modulates their proliferation. Immunofluorescence and RT-PCR showed that both CAKI-2 and A498 cells effectively synthesize and express the V2-R. Administration of the vasopressin analogue DDAVP induced an evident growth in both CAKI-2 and A498 cell lines. However, this proliferative effect was completely avoided by the preventive addition of the V2-R antagonist SR121463B (satavaptan). Our study shows for the first time that renal cancer may effectively synthesize and express the V2-R. Furthermore, AVP exerts in vitro a proliferative effect by acting on this receptor, as the selective V2-R blockage is able to completely prevent the cellular growth. A validation of these findings with in vivo models is required to ascertain if the eventual presence of V2-R could influence the aggressiveness of human renal neoplasias. From this point of view, a new, interesting therapeutical application of V2-R antagonists in the treatment of renal cancer could also be proposed, similar to that successfully described in the treatment of autosomal polycystic kidney disease (ADPKD).

Aquaretic inhibits renal cancer proliferation: Role of vasopressin receptor-2 (V2-R)

D. Bolignano;G. Coppolino;M. Buemi
2010-01-01

Abstract

Vasopressin (AVP) is a hormone with antidiuretic properties that is also involved in cellular proliferation of breast, pulmonary, and pancreatic neoplasias, attributable to the interaction with specific receptors, among which is the V2-R. Using a culture model of CAKI-2 and A498 cancer cells, our study aimed to verify if renal carcinoma cells also express V2-R and whether receptor activation modulates their proliferation. Immunofluorescence and RT-PCR showed that both CAKI-2 and A498 cells effectively synthesize and express the V2-R. Administration of the vasopressin analogue DDAVP induced an evident growth in both CAKI-2 and A498 cell lines. However, this proliferative effect was completely avoided by the preventive addition of the V2-R antagonist SR121463B (satavaptan). Our study shows for the first time that renal cancer may effectively synthesize and express the V2-R. Furthermore, AVP exerts in vitro a proliferative effect by acting on this receptor, as the selective V2-R blockage is able to completely prevent the cellular growth. A validation of these findings with in vivo models is required to ascertain if the eventual presence of V2-R could influence the aggressiveness of human renal neoplasias. From this point of view, a new, interesting therapeutical application of V2-R antagonists in the treatment of renal cancer could also be proposed, similar to that successfully described in the treatment of autosomal polycystic kidney disease (ADPKD).
2010
Aged; Antidiuretic Agents; pharmacology; Cell Line; Tumor; Cell Proliferation; Deamino Arginine Vasopressin; pharmacology; Fluorescent Antibody Technique; Humans; Kidney Neoplasms; metabolism; Male; Receptors; Vasopressin; metabolism; Reverse Transcriptase Polymerase Chain Reaction; Vasopressins; metabolism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/58195
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact