Aneurysms are considered as a critical cardiovascular disease worldwide when they rupture. The clinical understanding of geometrical impact on the flow behaviour and biomechanics of abdominal aortic aneurysm (AAA) is progressively developing. Proximal neck angulations of AAAs are believed to influence the hemodynamic changes and wall shear stress (WSS) within AAAs. Our aim was to perform pulsatile simulations using computational fluid dynamics (CFD) for patient-specific geometry to investigate the influence of severe angular (≥ 60°) neck on AAA’s hemodynamic and wall shear stress. The patient’s geometrical characteristics were obtained from a computed tomography images database of AAA patients. The AAA geometry was reconstructed using Mimics software. In computational method, blood was assumed Newtonian fluid and an inlet varying velocity waveform in a cardiac cycle was assigned. The CFD study was performed with ANSYS software. The results of flow behaviours indicated that the blood flow through severe bending of angular neck leads to high turbulence and asymmetry of flows within the aneurysm sac resulting in blood recirculation. The high wall shear stress (WSS) occurred near the AAA neck and on surface of aneurysm sac. This study explained and showed flow behaviours and WSS progression within high angular neck AAA and risk prediction of abdominal aorta rupture. We expect that the visualization of blood flow and hemodynamic changes resulted from CFD simulation could be as an extra tool to assist clinicians during a decision making when estimation the risks of interventional procedures.

Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity

Gramigna V.;
2019-01-01

Abstract

Aneurysms are considered as a critical cardiovascular disease worldwide when they rupture. The clinical understanding of geometrical impact on the flow behaviour and biomechanics of abdominal aortic aneurysm (AAA) is progressively developing. Proximal neck angulations of AAAs are believed to influence the hemodynamic changes and wall shear stress (WSS) within AAAs. Our aim was to perform pulsatile simulations using computational fluid dynamics (CFD) for patient-specific geometry to investigate the influence of severe angular (≥ 60°) neck on AAA’s hemodynamic and wall shear stress. The patient’s geometrical characteristics were obtained from a computed tomography images database of AAA patients. The AAA geometry was reconstructed using Mimics software. In computational method, blood was assumed Newtonian fluid and an inlet varying velocity waveform in a cardiac cycle was assigned. The CFD study was performed with ANSYS software. The results of flow behaviours indicated that the blood flow through severe bending of angular neck leads to high turbulence and asymmetry of flows within the aneurysm sac resulting in blood recirculation. The high wall shear stress (WSS) occurred near the AAA neck and on surface of aneurysm sac. This study explained and showed flow behaviours and WSS progression within high angular neck AAA and risk prediction of abdominal aorta rupture. We expect that the visualization of blood flow and hemodynamic changes resulted from CFD simulation could be as an extra tool to assist clinicians during a decision making when estimation the risks of interventional procedures.
2019
Abdominal aortic aneurysm
Angulated neck
Computational fluid dynamics
Computed tomography
Hemodynamic
Wall shear stress
Aged
Aortic Aneurysm, Abdominal
Blood Flow Velocity
Hemodynamics
Humans
Imaging, Three-Dimensional
Male
Neck
Stress, Mechanical
Time Factors
Tomography, X-Ray Computed
Wavelet Analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/63231
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact