Objective: The clinical and neurophysiological characteristics of myoclonus in Angelman syndrome (AS) have been evaluated in single case or small cohorts, with contrasting results. We evaluated the features of myoclonus in a wide cohort of AS patients. Methods: We performed polygraphic EEG-EMG recording in 24 patients with genetically confirmed AS and myoclonus. Neurophysiological investigations included jerk-locked back-averaging (JLBA), cortico-muscular coherence (CMC) and generalised partial directed coherence (GPDC). CMC and GPDC analyses were compared to those obtained from 10 healthy controls (HC). Results: Twenty-four patients (aged 3–35 years, median 20) were evaluated. Sequences of quasi-continuous rhythmic jerks mostly occurred at alpha frequency or just below (mean 8.4 ± 1.4 Hz), without EEG correlate. JLBA did not show any clear transient preceding the jerks. CMC showed bilateral over-threshold CMC in alpha band that was prominent on the contralateral hemisphere in the patient group as compared to HC group. GPDC showed a significantly higher alpha outflow from both hemispheres toward activated muscles in the patient group, and a significantly higher beta outflow from contralateral hemisphere in the HC group. Conclusions: These neurophysiological findings suggest a subcortical generator of myoclonus in AS. Significance: Myoclonus in AS has not a cortical origin as previously hypothesised.
Connectivity measures suggest a sub-cortical generator of myoclonus in Angelman syndrome
Ferlazzo E.;Gasparini S.;Elia M.;Ascoli M.;Sueri C.;Ferrigno G.;Cianci V.;Aguglia U.
2019-01-01
Abstract
Objective: The clinical and neurophysiological characteristics of myoclonus in Angelman syndrome (AS) have been evaluated in single case or small cohorts, with contrasting results. We evaluated the features of myoclonus in a wide cohort of AS patients. Methods: We performed polygraphic EEG-EMG recording in 24 patients with genetically confirmed AS and myoclonus. Neurophysiological investigations included jerk-locked back-averaging (JLBA), cortico-muscular coherence (CMC) and generalised partial directed coherence (GPDC). CMC and GPDC analyses were compared to those obtained from 10 healthy controls (HC). Results: Twenty-four patients (aged 3–35 years, median 20) were evaluated. Sequences of quasi-continuous rhythmic jerks mostly occurred at alpha frequency or just below (mean 8.4 ± 1.4 Hz), without EEG correlate. JLBA did not show any clear transient preceding the jerks. CMC showed bilateral over-threshold CMC in alpha band that was prominent on the contralateral hemisphere in the patient group as compared to HC group. GPDC showed a significantly higher alpha outflow from both hemispheres toward activated muscles in the patient group, and a significantly higher beta outflow from contralateral hemisphere in the HC group. Conclusions: These neurophysiological findings suggest a subcortical generator of myoclonus in AS. Significance: Myoclonus in AS has not a cortical origin as previously hypothesised.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.