The r-PTPη gene encodes a rat receptor-type protein tyrosine phosphatase whose expression is negatively regulated by neoplastic cell transformation. Here we first demonstrate a dramatic reduction in DEP-1/HPTPη (the human homolog of r-PTPη) expression in a panel of human thyroid carcinomas. Subsequently, we show that the reexpression of the r-PTPη gene in highly malignant rat thyroid cells transformed by retroviruses carrying the v-mos and v-ras-Ki oncogenes suppresses their malignant phenotype. Cell cycle analysis demonstrated that r-PTPη caused G1 growth arrest and increased the cyclin-dependent kinase inhibitor p27Kip1 protein level by reducing the proteasome-dependent degradation rate. We propose that the r-PTPη tumor suppressor activity is mediated by p27Kip1 protein stabilization, because suppression of p27Kip1 protein synthesis using p27-specific antisense oligonucleotides blocked the growth-inhibitory effect induced by r-PTPη. Furthermore, we provide evidence that in v-mos- or v-ras-Ki-transformed thyroid cells, the p27Kip1 protein level was regulated by the mitogen-activated protein (MAP) kinase pathway and that r-PTPη regulated p27Kip1 stability by preventing v-mos- or v-ras-Ki-induced MAP kinase activation.

Rat protein tyrosine phosphatase η suppresses the neoplastic phenotype of retrovirally transformed thyroid cells through the stabilization of p27Kip1

Trapasso F.;Iuliano R.;Viglietto G.;
2000-01-01

Abstract

The r-PTPη gene encodes a rat receptor-type protein tyrosine phosphatase whose expression is negatively regulated by neoplastic cell transformation. Here we first demonstrate a dramatic reduction in DEP-1/HPTPη (the human homolog of r-PTPη) expression in a panel of human thyroid carcinomas. Subsequently, we show that the reexpression of the r-PTPη gene in highly malignant rat thyroid cells transformed by retroviruses carrying the v-mos and v-ras-Ki oncogenes suppresses their malignant phenotype. Cell cycle analysis demonstrated that r-PTPη caused G1 growth arrest and increased the cyclin-dependent kinase inhibitor p27Kip1 protein level by reducing the proteasome-dependent degradation rate. We propose that the r-PTPη tumor suppressor activity is mediated by p27Kip1 protein stabilization, because suppression of p27Kip1 protein synthesis using p27-specific antisense oligonucleotides blocked the growth-inhibitory effect induced by r-PTPη. Furthermore, we provide evidence that in v-mos- or v-ras-Ki-transformed thyroid cells, the p27Kip1 protein level was regulated by the mitogen-activated protein (MAP) kinase pathway and that r-PTPη regulated p27Kip1 stability by preventing v-mos- or v-ras-Ki-induced MAP kinase activation.
2000
Animals
Blotting, Northern
Blotting, Western
Cell Line
Contact Inhibition
Cyclin-Dependent Kinase Inhibitor p27
Flow Cytometry
Genes, mos
Humans
Mice
Microscopy, Phase-Contrast
Microtubule-Associated Proteins
Mitogen-Activated Protein Kinases
Oligonucleotides, Antisense
Oncogene Protein p21(ras)
Phenotype
Phosphorylation
Plasmids
Protein Tyrosine Phosphatases
Rats
Receptor-Like Protein Tyrosine Phosphatases, Class 3
Retroviridae
Reverse Transcriptase Polymerase Chain Reaction
Thyroid Gland
Thyroid Neoplasms
Transfection
Cell Cycle Proteins
Cell Transformation, Neoplastic
Cell Transformation, Viral
Tumor Suppressor Proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/63906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? ND
social impact