This paper presents a successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allowing for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. The capability of this imaging system is demonstrated here through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, noninvasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds could be quantified for the first time. This novel technique provides opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases. (c) 2009 Optical Society of America

Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina

Torti C;
2009-01-01

Abstract

This paper presents a successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allowing for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. The capability of this imaging system is demonstrated here through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, noninvasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds could be quantified for the first time. This novel technique provides opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases. (c) 2009 Optical Society of America
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/6412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 109
social impact