N-Palmitoylethanolamide showed great therapeutic potential in the treatment of inflammation and pain but its unfavourable pharmacokinetics properties will hinder its use in the clinical practice.A nanotechnology-based formulation was developed to enhance the probability of N-palmitoylethanolamide therapeutic success, especially in skin disease management. Lipid nanoparticles were produced and characterized to evaluate their mean size, ¶-potential, thermal behaviour, and morphology. The ability of N-palmitoylethanolamide to diffuse across the epidermis as well as anti-inflammatory and analgesic effects were investigated. Particles had a mean size of about 150 nm and a ¶-potential of -40 mV. DSC data confirmed the solid state of the matrix and the embedding of N-palmitoylethanolamide while electron microscopy have evidenced a peculiar internal structure (i.e., low-electrondense spherical objects within the matrix) that can be reliably ascribed to the presence of oil nanocompartments. Lipid nanoparticles increased N-palmitoylethanolamide percutaneous diffusion and prolonged the anti-inflammatory and analgesic effects in vivo. Lipid nanoparticles seem a good nanotechnology-based strategy to bring N-palmitoylethanolamide to clinics.

Nanoparticles prolong N-palmitoylethanolamide anti-inflammatory and analgesic effects in vivo

De Caro C.;
2016-01-01

Abstract

N-Palmitoylethanolamide showed great therapeutic potential in the treatment of inflammation and pain but its unfavourable pharmacokinetics properties will hinder its use in the clinical practice.A nanotechnology-based formulation was developed to enhance the probability of N-palmitoylethanolamide therapeutic success, especially in skin disease management. Lipid nanoparticles were produced and characterized to evaluate their mean size, ¶-potential, thermal behaviour, and morphology. The ability of N-palmitoylethanolamide to diffuse across the epidermis as well as anti-inflammatory and analgesic effects were investigated. Particles had a mean size of about 150 nm and a ¶-potential of -40 mV. DSC data confirmed the solid state of the matrix and the embedding of N-palmitoylethanolamide while electron microscopy have evidenced a peculiar internal structure (i.e., low-electrondense spherical objects within the matrix) that can be reliably ascribed to the presence of oil nanocompartments. Lipid nanoparticles increased N-palmitoylethanolamide percutaneous diffusion and prolonged the anti-inflammatory and analgesic effects in vivo. Lipid nanoparticles seem a good nanotechnology-based strategy to bring N-palmitoylethanolamide to clinics.
2016
Analgesia
Inflammation
N-Palmitoylethanolamide
Nanoparticles
Nanostructured lipid carriers
Percutaneous absorption
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/64489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact