Sonography, elastography, sonoelastography are ultrasound imaging techniques commonly used in the clinical practice for the diagnosis of many pathological conditions. These highly reliable, non-invasive methods use high frequency, elastic pressure waves (ultrasounds) to interrogate the internal structure of biological tissues and organs, and the continuum mechanics hypothesis to reconstruct, from the output of the system, the biophysical characteristics of the samples. Nevertheless, continuum mechanics disregards the discrete nature of tissues and organs, resulting in an inability for the model to describe some important tissue biophysical characteristics such as the cell size and their spatial layout. Here, we used the theory of doublet mechanics – a discrete nano-mechanical field theory – to model the propagation of ultrasounds in a multilayered biological tissue. We found that the output of the model exhibits a very high sensitivity to the macro and micro characteristics of the tissue, including cell size. We used results from the model to correlate the internal structure of the samples to the reflection coefficient, i.e. the continuum level response of the system. This model, and its more sophisticated evolutions that will be developed over time, can complement traditional ultrasound imaging, and provide ways to analyze non-invasively living tissues with a resolution inaccessible to conventional techniques of analysis, including positron emission tomography, computer tomography, and magnetic resonance.

A nanomechanical model enables comprehensive characterization of biological tissues in ultrasound imaging

Gentile, F
2020-01-01

Abstract

Sonography, elastography, sonoelastography are ultrasound imaging techniques commonly used in the clinical practice for the diagnosis of many pathological conditions. These highly reliable, non-invasive methods use high frequency, elastic pressure waves (ultrasounds) to interrogate the internal structure of biological tissues and organs, and the continuum mechanics hypothesis to reconstruct, from the output of the system, the biophysical characteristics of the samples. Nevertheless, continuum mechanics disregards the discrete nature of tissues and organs, resulting in an inability for the model to describe some important tissue biophysical characteristics such as the cell size and their spatial layout. Here, we used the theory of doublet mechanics – a discrete nano-mechanical field theory – to model the propagation of ultrasounds in a multilayered biological tissue. We found that the output of the model exhibits a very high sensitivity to the macro and micro characteristics of the tissue, including cell size. We used results from the model to correlate the internal structure of the samples to the reflection coefficient, i.e. the continuum level response of the system. This model, and its more sophisticated evolutions that will be developed over time, can complement traditional ultrasound imaging, and provide ways to analyze non-invasively living tissues with a resolution inaccessible to conventional techniques of analysis, including positron emission tomography, computer tomography, and magnetic resonance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/64744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact