A leukemic in vitro model produced by transducing Cord Blood derived-hematopoietic CD34+ cells with the MLL-AF9 translocation resulting in the oncogenic fusion protein, is used to assess for sensitivity to Zoledronic acid. These cells are practically immortalized and are of myeloid origin. Proliferation, clonogenic and stromal co-culture assays showed that the MLL-AF9 cells were considerably more sensitive to Zoledronic acid than normal hematopoietic CD34+ cells or MS-5 stromal cells. The MLL-AF9 cells were notably more inhibited by Zoledronic acid when cultured as colonies in 3 dimensions, requiring cell-cell contacts compared to suspension expansion cultures. This is coherent with the mechanism of action of Zoledronic acid inhibiting farnesyl diphosphate synthase which results in a block in prenylation of GTPases such that their role in the membrane is compromised for cell-cell contacts. Zoledronic acid can be proposed to target the MLL-AF9 leukemic stem cells before they emerge from the hematopoietic niche, which being in proximity to bone osteoclasts where Zoledronic acid is sequestered can be predicted to result in sufficient levels to result in an anti-leukemic action.

Zoledronic acid inhibits the growth of leukemic MLL-AF9 transformed hematopoietic cells

Chiarella E.;Codispoti B.;Aloisio A.;Scicchitano S.;Montalcini Y.;Lico D.;Morrone G.;Mesuraca M.
;
Bond H. M.
2020-01-01

Abstract

A leukemic in vitro model produced by transducing Cord Blood derived-hematopoietic CD34+ cells with the MLL-AF9 translocation resulting in the oncogenic fusion protein, is used to assess for sensitivity to Zoledronic acid. These cells are practically immortalized and are of myeloid origin. Proliferation, clonogenic and stromal co-culture assays showed that the MLL-AF9 cells were considerably more sensitive to Zoledronic acid than normal hematopoietic CD34+ cells or MS-5 stromal cells. The MLL-AF9 cells were notably more inhibited by Zoledronic acid when cultured as colonies in 3 dimensions, requiring cell-cell contacts compared to suspension expansion cultures. This is coherent with the mechanism of action of Zoledronic acid inhibiting farnesyl diphosphate synthase which results in a block in prenylation of GTPases such that their role in the membrane is compromised for cell-cell contacts. Zoledronic acid can be proposed to target the MLL-AF9 leukemic stem cells before they emerge from the hematopoietic niche, which being in proximity to bone osteoclasts where Zoledronic acid is sequestered can be predicted to result in sufficient levels to result in an anti-leukemic action.
2020
Acute myeloid leukemia
Biochemistry
Biological sciences
Bisphosphonate
Cancer research
Cell biology
MLL-AF9 gene rearrangement
Molecular biology
Zoledronic acid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/64930
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact