Food waste valorization practices have gained considerable attention focusing on the conversion of the waste into valuable products. In this context, the present study provides an insight into a new Eudragit RS100 based nanosystem as a carrier of date palm (Phoenix dactylifera L.) seeds oil known for its an antidiabetic activity. A priori systematic study was carried out in order to understand the individual impact of all contributing factors considered by the nanoprecipitation method. Then, date seeds oil nanoparticles were prepared, characterized and analyzed for their in vitro inhibition activity against: α-amylase and α-glucosidase. The results showed that the developed nanoparticles had an average diameter around 207 nm, a ζ-potential of +59 mV, and an encapsulation efficiency equal to 97 ± 1% with a loading capacity of 0.48 mg·mg-1. The α-amylase and α-glucosidase IC50were found to be 87.6 and 155.3 μg·mL-1, respectively. Therefore, this study may surely open new perspectives for the development of novel health-promoting plant oils loaded-nanocarriers for several purposes.

Poly(ethyl acrylate- co-methyl Methacrylate- co-trimethylammoniethyl methacrylate chloride) (Eudragit RS100) Nanocapsules as Nanovector Carriers for Phoenix dactylifera L. Seeds Oil: a Versatile Antidiabetic Agent

Froiio F.;Cristiano M. C.;Paolino D.;
2020-01-01

Abstract

Food waste valorization practices have gained considerable attention focusing on the conversion of the waste into valuable products. In this context, the present study provides an insight into a new Eudragit RS100 based nanosystem as a carrier of date palm (Phoenix dactylifera L.) seeds oil known for its an antidiabetic activity. A priori systematic study was carried out in order to understand the individual impact of all contributing factors considered by the nanoprecipitation method. Then, date seeds oil nanoparticles were prepared, characterized and analyzed for their in vitro inhibition activity against: α-amylase and α-glucosidase. The results showed that the developed nanoparticles had an average diameter around 207 nm, a ζ-potential of +59 mV, and an encapsulation efficiency equal to 97 ± 1% with a loading capacity of 0.48 mg·mg-1. The α-amylase and α-glucosidase IC50were found to be 87.6 and 155.3 μg·mL-1, respectively. Therefore, this study may surely open new perspectives for the development of novel health-promoting plant oils loaded-nanocarriers for several purposes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/65258
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact