Ferulic acid is a derivative of cinnamic acid showing efficacious anti-oxidant activity. It catalyzes the stable phenoxy radical formation, upon absorption of ultraviolet light, giving the strength to ferulic acid for terminating free radical chain reactions. Ultraviolet rays are one of the most dangerous factors that daily assault the skin, causing excessive generation of reactive oxygen species (ROS), which are regarded to be important contributors to a variety of cutaneous alterations. The skin possesses endogenous antioxidant defense systems, but the excess of ROS leads to an oxidant–antioxidant imbalance. Although ferulic acid is daily introduced in human organism with the diet, its bioavailability after oral administration is poor, particularly in the skin. The aim of this investigation was to evaluate three types of emulsions (W/O/W multiple emulsions and two simple emulsions) as suitable formulations for topical application of the active compound. In vitro studies were performed to investigate the stability and release profiles of these systems. Multiple emulsions showed great stability and the best ability to carry and release ferulic acid. In vivo evaluations highlighted their best capability to treat UV-B-induced erythema. These findings suggested multiple emulsions as an innovative and more efficient vehicle for topical application of ferulic acid.

Improvement of Ferulic Acid Antioxidant Activity by Multiple Emulsions: In Vitro and In Vivo Evaluation

Mancuso A.
Membro del Collaboration Group
;
Cristiano M. C.;Pandolfo R.;Greco M.;Fresta M.;Paolino D.
2021-01-01

Abstract

Ferulic acid is a derivative of cinnamic acid showing efficacious anti-oxidant activity. It catalyzes the stable phenoxy radical formation, upon absorption of ultraviolet light, giving the strength to ferulic acid for terminating free radical chain reactions. Ultraviolet rays are one of the most dangerous factors that daily assault the skin, causing excessive generation of reactive oxygen species (ROS), which are regarded to be important contributors to a variety of cutaneous alterations. The skin possesses endogenous antioxidant defense systems, but the excess of ROS leads to an oxidant–antioxidant imbalance. Although ferulic acid is daily introduced in human organism with the diet, its bioavailability after oral administration is poor, particularly in the skin. The aim of this investigation was to evaluate three types of emulsions (W/O/W multiple emulsions and two simple emulsions) as suitable formulations for topical application of the active compound. In vitro studies were performed to investigate the stability and release profiles of these systems. Multiple emulsions showed great stability and the best ability to carry and release ferulic acid. In vivo evaluations highlighted their best capability to treat UV-B-induced erythema. These findings suggested multiple emulsions as an innovative and more efficient vehicle for topical application of ferulic acid.
2021
Antioxidant
Ferulic acid
In vitro
In vivo
Multiple emulsion
Natural compound
Skin delivery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/68026
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact