The development of therapeutic targets for COVID-19 relies on understanding the molecular mechanism of pathogenesis. Identifying genes or proteins involved in the infection mechanism is the key to shedding light on the complex molecular mechanisms. The combined effort of many laboratories distributed throughout the world has produced protein and genetic interactions. We integrated available results and obtained a host protein-protein interaction network composed of 1432 human proteins. Next, we performed network centrality analysis to identify critical proteins in the derived network. Finally, we performed a functional enrichment analysis of central proteins. We observed that the identified proteins are primarily associated with several crucial pathways, including cellular process, signaling transduction, neurodegenerative diseases. We focused on the proteins that are involved in human respiratory tract diseases. We highlighted many potential therapeutic targets, including RBX1, HSPA5, ITCH, RAB7A, RAB5A, RAB8A, PSMC5, CAPZB, CANX, IGF2R, and HSPA1A, which are central and also associated with multiple diseases.

Analyzing host-viral interactome of SARS-CoV-2 for identifying vulnerable host proteins during COVID-19 pathogenesis

Guzzi, Pietro Hiram
Conceptualization
2021-01-01

Abstract

The development of therapeutic targets for COVID-19 relies on understanding the molecular mechanism of pathogenesis. Identifying genes or proteins involved in the infection mechanism is the key to shedding light on the complex molecular mechanisms. The combined effort of many laboratories distributed throughout the world has produced protein and genetic interactions. We integrated available results and obtained a host protein-protein interaction network composed of 1432 human proteins. Next, we performed network centrality analysis to identify critical proteins in the derived network. Finally, we performed a functional enrichment analysis of central proteins. We observed that the identified proteins are primarily associated with several crucial pathways, including cellular process, signaling transduction, neurodegenerative diseases. We focused on the proteins that are involved in human respiratory tract diseases. We highlighted many potential therapeutic targets, including RBX1, HSPA5, ITCH, RAB7A, RAB5A, RAB8A, PSMC5, CAPZB, CANX, IGF2R, and HSPA1A, which are central and also associated with multiple diseases.
2021
COVID-19
Centrality
Disease
Pathways
Protein-protein interaction
SARS-CoV-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/70467
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact