Let $R$ be a non-commutative ring of characteristic different from $2$, with center $Z(R)$, Utumi quotient ring $U$ and extended centroid $C$. Let $G$ be a non-zero generalized derivation of $R$, $L$ be a non-central Lie ideal of $R$, $a$ be an element of $R$. If $aG(u)u=0$, for all $u\in L$, then either $a=0$ or $G(x)=bx$, for all $x\in R$ and $ab=0$.
Generalized Derivations and Annihilator Conditions in Prime Rings
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
RANIA F
			2008-01-01
Abstract
Let $R$ be a non-commutative ring of characteristic different from $2$, with center $Z(R)$, Utumi quotient ring $U$ and extended centroid $C$. Let $G$ be a non-zero generalized derivation of $R$, $L$ be a non-central Lie ideal of $R$, $a$ be an element of $R$. If $aG(u)u=0$, for all $u\in L$, then either $a=0$ or $G(x)=bx$, for all $x\in R$ and $ab=0$.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


