The growth of knowledge about the molecular mechanisms underlying Alzheimer's disease (AD) has highlighted the role of neuro inflammation in the pathophysiology of this disorder. AD is classically characterized by the deposit of misfolded proteins: the extra cellular accumulation of beta amyloid peptide (Aβ), and the formation of intracellular neurofibrillary tangles. However, it is clear that many other cellular dysfunctions occur. Among these, a prominent role is exerted by the inflammatory process which is a consequence of the over-activation of glial cells. Indeed, several models of AD have demonstrated that glia modify their functions, losing the physiological supportive role. These cells instead acquire a pro-inflammatory phenotype, thus contributing to exacerbate Aβ toxicity. The relationship between neurodegeneration and neuroinflammation is strictly interdependent, and research efforts are now addressed to antagonize both processes simultaneously. Along this line palmitoylethanolamide (PEA) has attracted much attention because of its numerous pharmacological properties, particularly those related to the modulation of peripheral inflammation through the peroxisome proliferator activated receptor-α involvement. In light of these considerations, we explored the anti-inflammatory and neuroprotective effects of PEA in rat neuronal cultures and organotypic hippocampal slices challenged with Aβ, and treated with PEA in the presence or absence of a selective peroxisome proliferator activated receptor-a antagonist. The data indicate that PEA is able to blunt Aβ-induced astrocyte activation and to exert a marked protective effect on neurons. These findings highlight new pharmacological properties of PEA and suggest that this compound may provide an effective strategy for AD. © 2013 Bentham Science Publishers.

Neuroglial roots of neurodegenerative diseases: Therapeutic potential of palmitoylethanolamide in models of alzheimer's disease

Steardo L.
2013-01-01

Abstract

The growth of knowledge about the molecular mechanisms underlying Alzheimer's disease (AD) has highlighted the role of neuro inflammation in the pathophysiology of this disorder. AD is classically characterized by the deposit of misfolded proteins: the extra cellular accumulation of beta amyloid peptide (Aβ), and the formation of intracellular neurofibrillary tangles. However, it is clear that many other cellular dysfunctions occur. Among these, a prominent role is exerted by the inflammatory process which is a consequence of the over-activation of glial cells. Indeed, several models of AD have demonstrated that glia modify their functions, losing the physiological supportive role. These cells instead acquire a pro-inflammatory phenotype, thus contributing to exacerbate Aβ toxicity. The relationship between neurodegeneration and neuroinflammation is strictly interdependent, and research efforts are now addressed to antagonize both processes simultaneously. Along this line palmitoylethanolamide (PEA) has attracted much attention because of its numerous pharmacological properties, particularly those related to the modulation of peripheral inflammation through the peroxisome proliferator activated receptor-α involvement. In light of these considerations, we explored the anti-inflammatory and neuroprotective effects of PEA in rat neuronal cultures and organotypic hippocampal slices challenged with Aβ, and treated with PEA in the presence or absence of a selective peroxisome proliferator activated receptor-a antagonist. The data indicate that PEA is able to blunt Aβ-induced astrocyte activation and to exert a marked protective effect on neurons. These findings highlight new pharmacological properties of PEA and suggest that this compound may provide an effective strategy for AD. © 2013 Bentham Science Publishers.
2013
Alzheimer's disease
Astrocytes
Beta amyloid
Hippocampal organotypic cultures
Neuroinflammation
Neurons
Palmitoylethanolamide
Peroxisome proliferator-activated receptor-α
Alzheimer Disease
Amides
Animals
Cell Survival
Cells, Cultured
Endocannabinoids
Ethanolamines
Hippocampus
Neurodegenerative Diseases
Neuroglia
Organ Culture Techniques
Palmitic Acids
Rats
Rats, Sprague-Dawley
Disease Models, Animal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/72665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 44
social impact