Microarray is a powerful technology that enables the monitoring of expression levels for thousands of genes simultaneously, providing scientists with a full overview about DNA and RNA investigation. The process is made of three main phases: interaction with biological samples, data extraction, and data analysis. In particular, the data extraction phase strongly relies on image processing algorithms, since the expression levels are revealed by the interaction of light with fluorescent markers. More in detail, in order to extract quantitative information from probes image, three steps are required: (1) gridding, (2) segmentation, and (3) intensity quantification. Errors in one of these steps can deeply affect the process outcome. In this chapter each of the above mentioned steps will be analyzed and discussed. Software platforms dedicated to this purpose will be reported as well.
Algorithms to Preprocess Microarray Image Data
Zaffino P.;Spadea M. F.
2022-01-01
Abstract
Microarray is a powerful technology that enables the monitoring of expression levels for thousands of genes simultaneously, providing scientists with a full overview about DNA and RNA investigation. The process is made of three main phases: interaction with biological samples, data extraction, and data analysis. In particular, the data extraction phase strongly relies on image processing algorithms, since the expression levels are revealed by the interaction of light with fluorescent markers. More in detail, in order to extract quantitative information from probes image, three steps are required: (1) gridding, (2) segmentation, and (3) intensity quantification. Errors in one of these steps can deeply affect the process outcome. In this chapter each of the above mentioned steps will be analyzed and discussed. Software platforms dedicated to this purpose will be reported as well.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.