Despite substantial advancements have been achieved in the identification of long noncoding RNA (lncRNA) molecules, many challenges still remain into their functional characterization. Loss-of-function approaches are needed to study oncogenic lncRNAs, which appear more difficult to knock down by RNA interference as compared to mRNAs. In this chapter, we present a protocol based on the use of a novel class of antisense oligonucleotides, named locked nucleic acid (LNA) GapmeRs, to inhibit the oncogenic lncRNA NEAT1 in multiple myeloma cells. Overall, this approach holds many advantages, including its possible independence from delivery reagents as well as the capability to knock down lncRNAs even in hard-to-transfect suspension cells, like hematopoietic cells.
In Vitro Silencing of lncRNAs Using LNA GapmeRs
Morelli E.;Tassone P.;Viglietto G.;Neri A.;Amodio N.
2021-01-01
Abstract
Despite substantial advancements have been achieved in the identification of long noncoding RNA (lncRNA) molecules, many challenges still remain into their functional characterization. Loss-of-function approaches are needed to study oncogenic lncRNAs, which appear more difficult to knock down by RNA interference as compared to mRNAs. In this chapter, we present a protocol based on the use of a novel class of antisense oligonucleotides, named locked nucleic acid (LNA) GapmeRs, to inhibit the oncogenic lncRNA NEAT1 in multiple myeloma cells. Overall, this approach holds many advantages, including its possible independence from delivery reagents as well as the capability to knock down lncRNAs even in hard-to-transfect suspension cells, like hematopoietic cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.