Osteoarthritis (OA) is a disease caused by joint degeneration with massive cartilage loss, and obesity is among the risk factors for its onset, though the pathophysiological mechanisms underlying the disease and better therapeutic approach still remain to be assessed. In recent years, several nutraceutical interventions have been investigated in order to define better solutions for preventing and treating OA. Among them, polyunsaturated fatty acids (n-3 PUFAs) appear to represent potential candidates in counteracting OA and its consequences, due to their anti-inflammatory, antioxidant, and chondroinductive effects. PUFAs have been found to counteract the onset and progression of OA by reducing bone and cartilage destruction, inhibiting proinflammatory cytokine release, reactive oxygen species (ROS) generation, and the NF-κB pathway's activation. Moreover, a diet rich in n-3 PUFAs and their derivatives (maresins and resolvins) demonstrates beneficial effects on associated pain reduction. Finally, it has been shown that together with the anti-inflammatory and antioxidant properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, their antiapoptotic and antiangiogenic effects contribute in reducing OA development. The present review is aimed at assessing evidence suggesting the potential benefit of nutraceutical supplementation with PUFAs in OA management according to their efficacy in targeting relevant pathophysiological mechanisms responsible for inflammation and joint destruction processes, and this may represent a novel and potentially useful approach in OA prevention and treatment. For that purpose, a PubMed literature survey was conducted with a focus on some in vitro and in vivo studies and clinical trials from 2015 to 2020.

The Role of Nutraceuticals in Osteoarthritis Prevention and Treatment: Focus on n-3 PUFAs

Oppedisano F.;Maiuolo J.;Gliozzi M.;Musolino V.;Carresi C.;Ilari S.;Serra M.;Muscoli C.;Gratteri S.;Palma E.;Mollace V.
2021-01-01

Abstract

Osteoarthritis (OA) is a disease caused by joint degeneration with massive cartilage loss, and obesity is among the risk factors for its onset, though the pathophysiological mechanisms underlying the disease and better therapeutic approach still remain to be assessed. In recent years, several nutraceutical interventions have been investigated in order to define better solutions for preventing and treating OA. Among them, polyunsaturated fatty acids (n-3 PUFAs) appear to represent potential candidates in counteracting OA and its consequences, due to their anti-inflammatory, antioxidant, and chondroinductive effects. PUFAs have been found to counteract the onset and progression of OA by reducing bone and cartilage destruction, inhibiting proinflammatory cytokine release, reactive oxygen species (ROS) generation, and the NF-κB pathway's activation. Moreover, a diet rich in n-3 PUFAs and their derivatives (maresins and resolvins) demonstrates beneficial effects on associated pain reduction. Finally, it has been shown that together with the anti-inflammatory and antioxidant properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, their antiapoptotic and antiangiogenic effects contribute in reducing OA development. The present review is aimed at assessing evidence suggesting the potential benefit of nutraceutical supplementation with PUFAs in OA management according to their efficacy in targeting relevant pathophysiological mechanisms responsible for inflammation and joint destruction processes, and this may represent a novel and potentially useful approach in OA prevention and treatment. For that purpose, a PubMed literature survey was conducted with a focus on some in vitro and in vivo studies and clinical trials from 2015 to 2020.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/74025
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact