Venous thromboembolism (VTE) is a significant cause of mortality in patients with lung cancer. Despite the availability of a wide range of anticoagulants to help prevent thrombosis, thromboprophylaxis in ambulatory patients is a challenge due to its associated risk of haemorrhage. As a result, anticoagulation is only recommended in patients with a relatively high risk of VTE. Efforts have been made to develop predictive models for VTE risk assessment in cancer patients, but the availability of a reliable predictive model for ambulate patients with lung cancer is unclear. We have analysed the latest information on this topic, with a focus on the lung cancer-related risk factors for VTE, and risk prediction models developed and validated in this group of patients. The existing risk models, such as the Khorana score, the PROTECHT score and the CONKO score, have shown poor performance in external validations, failing to identify many high-risk individuals. Some of the newly developed and updated models may be promising, but their further validation is needed.
Risk factors and prediction models for venous thromboembolism in ambulatory patients with lung cancer
De Rosa S.;
2021-01-01
Abstract
Venous thromboembolism (VTE) is a significant cause of mortality in patients with lung cancer. Despite the availability of a wide range of anticoagulants to help prevent thrombosis, thromboprophylaxis in ambulatory patients is a challenge due to its associated risk of haemorrhage. As a result, anticoagulation is only recommended in patients with a relatively high risk of VTE. Efforts have been made to develop predictive models for VTE risk assessment in cancer patients, but the availability of a reliable predictive model for ambulate patients with lung cancer is unclear. We have analysed the latest information on this topic, with a focus on the lung cancer-related risk factors for VTE, and risk prediction models developed and validated in this group of patients. The existing risk models, such as the Khorana score, the PROTECHT score and the CONKO score, have shown poor performance in external validations, failing to identify many high-risk individuals. Some of the newly developed and updated models may be promising, but their further validation is needed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.