The neural correlates of action language processing are still debated within embodied cognition research and little is known about the flexible involvement of modality-specific pre-motor system and multimodal high-level temporo-parietal regions as a function of explicit and implicit tasks. A systematic review and the Activation likelihood estimation (ALE) meta-analyses on functional neuroimaging studies were performed to identify neural correlates of action language processing activated during explicit and implicit tasks. The contrast ALE meta-analysis revealed activation of modality-specific premotor area and inferior frontal areas during explicit action language tasks while a greater activation of posterior temporo-occipital areas emerged for implicit tasks. The conjunction analysis revealed overlap in the temporo-parietal multimodal high-level regions for both types of tasks. Functional specialization of the middle temporal gyrus was found where the more posterior-occipital part resulted activated during implicit action language tasks whereas the antero-lateral part was involved in explicit tasks. Our findings were discussed within a conceptual flexibility perspective about the involvement of both the modality-specific and multimodal brain system during action language processing depending on different types of tasks.
Neural correlates of embodied action language processing: a systematic review and meta-analytic study
Raimo S.
;
2022-01-01
Abstract
The neural correlates of action language processing are still debated within embodied cognition research and little is known about the flexible involvement of modality-specific pre-motor system and multimodal high-level temporo-parietal regions as a function of explicit and implicit tasks. A systematic review and the Activation likelihood estimation (ALE) meta-analyses on functional neuroimaging studies were performed to identify neural correlates of action language processing activated during explicit and implicit tasks. The contrast ALE meta-analysis revealed activation of modality-specific premotor area and inferior frontal areas during explicit action language tasks while a greater activation of posterior temporo-occipital areas emerged for implicit tasks. The conjunction analysis revealed overlap in the temporo-parietal multimodal high-level regions for both types of tasks. Functional specialization of the middle temporal gyrus was found where the more posterior-occipital part resulted activated during implicit action language tasks whereas the antero-lateral part was involved in explicit tasks. Our findings were discussed within a conceptual flexibility perspective about the involvement of both the modality-specific and multimodal brain system during action language processing depending on different types of tasks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.