On 31 December 2019, a cluster of pneumonia cases of unknown etiology was reported in Wuhan (China). The cases were declared to be Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 has been defined as SARS Coronavirus 2 (SARS-CoV-2). Some countries, e.g., Italy, France, and the United Kingdom (UK), have been subjected to frequent restrictions for preventing the spread of infection, contrary to other ones, e.g., the United States of America (USA) and Sweden. The restrictions afflicted the evolution of trends with several perturbations that destabilized its normal evolution. Globally, Rt has been used to estimate time-varying reproduction numbers during epidemics. Methods: This paper presents a solution based on Deep Learning (DL) for the analysis and forecasting of epidemic trends in new positive cases of SARS-CoV-2 (COVID-19). It combined a neural network (NN) and an Rt estimation by adjusting the data produced by the output layer of the NN on the related Rt estimation. Results: Tests were performed on datasets related to the following countries: Italy, the USA, France, the UK, and Sweden. Positive case registration was retrieved between 24 February 2020 and 11 January 2022. Tests performed on the Italian dataset showed that our solution reduced the Mean Absolute Percentage Error (MAPE) by 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, and 24.50% compared to other ones with the same configuration but that were based on the LSTM, GRU, RNN, ARIMA (1,0,3), and ARIMA (7,2,4) models, or an NN without applying the Rt as a corrective index. It also reduced MAPE by 17.93%, the Mean Absolute Error (MAE) by 34.37%, and the Root Mean Square Error (RMSE) by 43.76% compared to the same model without the adjustment performed by the Rt. Furthermore, it allowed an average MAPE reduction of 5.37%, 63.10%, 17.84%, and 14.91% on the datasets related to the USA, France, the UK, and Sweden, respectively.

Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with Rt Estimation

Cinaglia, Pietro;Cannataro, Mario
2022-01-01

Abstract

On 31 December 2019, a cluster of pneumonia cases of unknown etiology was reported in Wuhan (China). The cases were declared to be Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 has been defined as SARS Coronavirus 2 (SARS-CoV-2). Some countries, e.g., Italy, France, and the United Kingdom (UK), have been subjected to frequent restrictions for preventing the spread of infection, contrary to other ones, e.g., the United States of America (USA) and Sweden. The restrictions afflicted the evolution of trends with several perturbations that destabilized its normal evolution. Globally, Rt has been used to estimate time-varying reproduction numbers during epidemics. Methods: This paper presents a solution based on Deep Learning (DL) for the analysis and forecasting of epidemic trends in new positive cases of SARS-CoV-2 (COVID-19). It combined a neural network (NN) and an Rt estimation by adjusting the data produced by the output layer of the NN on the related Rt estimation. Results: Tests were performed on datasets related to the following countries: Italy, the USA, France, the UK, and Sweden. Positive case registration was retrieved between 24 February 2020 and 11 January 2022. Tests performed on the Italian dataset showed that our solution reduced the Mean Absolute Percentage Error (MAPE) by 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, and 24.50% compared to other ones with the same configuration but that were based on the LSTM, GRU, RNN, ARIMA (1,0,3), and ARIMA (7,2,4) models, or an NN without applying the Rt as a corrective index. It also reduced MAPE by 17.93%, the Mean Absolute Error (MAE) by 34.37%, and the Root Mean Square Error (RMSE) by 43.76% compared to the same model without the adjustment performed by the Rt. Furthermore, it allowed an average MAPE reduction of 5.37%, 63.10%, 17.84%, and 14.91% on the datasets related to the USA, France, the UK, and Sweden, respectively.
2022
COVID-19
SARS-CoV-2
deep learning
epidemic trend
neural networks
time series
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/79906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact