Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470-610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices.

Anti-Reflective Zeolite Coating for Implantable Bioelectronic Devices

Oliva, Giuseppe;Bianco, Maria Giovanna;Fiorillo, Antonino S;Pullano, Salvatore A
2022-01-01

Abstract

Since sunlight is one of the most easily available and clean energy supplies, solar cell development and the improvement of its conversion efficiency represent a highly interesting topic. Superficial light reflection is one of the limiting factors of the photovoltaic cells (PV) efficiency. To this end, interfacial layer with anti-reflective properties reduces this phenomenon, improving the energy potentially available for transduction. Nanoporous materials, because of the correlation between the refractive index and the porosity, allow low reflection, improving light transmission through the coating. In this work, anti-reflective coatings (ARCs) deposited on commercial PV cells, which were fabricated using two different Linde Type A (LTA) zeolites (type 3A and 4A), have been investigated. The proposed technique allows an easier deposition of a zeolite-based mixture, avoiding the use of chemicals and elevated temperature calcination processes. Results using radiation in the range 470-610 nm evidenced substantial enhancement of the fill factor, with maximum achieved values of over 40%. At 590 and 610 nm, which are the most interesting bands for implantable devices, FF is improved, with a maximum of 22% and 10%, respectively. ARCs differences are mostly related to the morphology of the zeolite powder used, which resulted in thicker and rougher coatings using zeolite 3A. The proposed approach allows a simple and reliable deposition technique, which can be of interest for implantable medical devices.
2022
anti-reflective coating
implantable device
medical application
nanoporous material
solar cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/79967
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact