Italy was one of the European countries most afflicted by the COVID-19 pandemic. From 2020 to 2022, Italy adopted strong containment measures against the COVID-19 epidemic and then started an important vaccination campaign. Here, we extended previous work by applying the COVID-19 Community Temporal Visualizer (CCTV) methodology to Italian COVID-19 data related to 2020, 2021, and five months of 2022. The aim of this work was to evaluate how Italy reacted to the pandemic in the first two waves of COVID-19, in which only containment measures such as the lockdown had been adopted, in the months following the start of the vaccination campaign, the months with the mildest weather, and the months affected by the new COVID-19 variants. This assessment was conducted by observing the behavior of single regions. CCTV methodology allows us to map the similarities in the behavior of Italian regions on a graph and use a community detection algorithm to visualize and analyze the spatio-temporal evolution of data. The results depict that the communities formed by Italian regions change with respect to the ten data measures and time.

Application of CCTV Methodology to Analyze COVID-19 Evolution in Italy

Milano, Marianna;Agapito, Giuseppe;Cannataro, Mario
2022-01-01

Abstract

Italy was one of the European countries most afflicted by the COVID-19 pandemic. From 2020 to 2022, Italy adopted strong containment measures against the COVID-19 epidemic and then started an important vaccination campaign. Here, we extended previous work by applying the COVID-19 Community Temporal Visualizer (CCTV) methodology to Italian COVID-19 data related to 2020, 2021, and five months of 2022. The aim of this work was to evaluate how Italy reacted to the pandemic in the first two waves of COVID-19, in which only containment measures such as the lockdown had been adopted, in the months following the start of the vaccination campaign, the months with the mildest weather, and the months affected by the new COVID-19 variants. This assessment was conducted by observing the behavior of single regions. CCTV methodology allows us to map the similarities in the behavior of Italian regions on a graph and use a community detection algorithm to visualize and analyze the spatio-temporal evolution of data. The results depict that the communities formed by Italian regions change with respect to the ten data measures and time.
2022
CCTV methodology
COVID-19
community detection
network analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/79998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact