The assessment of vascular complexity in the lower limbs provides relevant information about peripheral artery occlusive diseases (PAOD), thus fostering improvements both in therapeutic decisions and prognostic estimation. The current clinical practice consists of visually inspecting and evaluating cine-angiograms of the interested region, which is largely operator-dependent. We present here an automatic method for segmenting the vessel tree and compute a quantitative measure, in terms of fractal dimension (FD), of the vascular complexity. The proposed workflow consists of three main steps: (i) conversion of the cine-angiographies to single static images with a broader field of view, (ii) automatic segmentation of the vascular trees, and (iii) calculation and assessment of FD as complexity index. In particular, this work defines (1) a method to reduce the inter-observer variability in judging vascular complexity in cine-angiography images from patients affected by peripheral artery occlusive disease (PAOD), and (2) the use of Fractal Dimension as a metric of shape complexity of vascular tree. The inter-class correlation coefficient (ICC) is computed as inter-observer agreement metric and to account for possible systematic error, that depends on the experience of the raters. The automatic segmentation of vascular tree achieved an Area Under the Curve mean value of 0.77±0.07, with a min-max range of 0.57 - 0.87. Absolute operator agreement was higher over the segmented image (ICC= 0.96) compared to the video (ICC= 0.76) and the a broader field of view image (ICC= 0.92). Fractal Dimension computed on both manual segmented images (ground truths) and automatically showed a good correlation with the clinical score (0.85 and 0.75, respectively). Experimental analyses suggest that extracting the vascular tree from cine-angiography can substantially improve the reliability of visual assessment of vascular complexity in PAOD. Results also reveal the effectiveness of FD in evaluating complex vascular tree structures.

Assessing vascular complexity of PAOD patients by deep learning-based segmentation and fractal dimension

Spadea M. F.;Scaramuzzino S.;De Rosa S.;Indolfi C.;Calimeri F.;Zaffino P.
2022-01-01

Abstract

The assessment of vascular complexity in the lower limbs provides relevant information about peripheral artery occlusive diseases (PAOD), thus fostering improvements both in therapeutic decisions and prognostic estimation. The current clinical practice consists of visually inspecting and evaluating cine-angiograms of the interested region, which is largely operator-dependent. We present here an automatic method for segmenting the vessel tree and compute a quantitative measure, in terms of fractal dimension (FD), of the vascular complexity. The proposed workflow consists of three main steps: (i) conversion of the cine-angiographies to single static images with a broader field of view, (ii) automatic segmentation of the vascular trees, and (iii) calculation and assessment of FD as complexity index. In particular, this work defines (1) a method to reduce the inter-observer variability in judging vascular complexity in cine-angiography images from patients affected by peripheral artery occlusive disease (PAOD), and (2) the use of Fractal Dimension as a metric of shape complexity of vascular tree. The inter-class correlation coefficient (ICC) is computed as inter-observer agreement metric and to account for possible systematic error, that depends on the experience of the raters. The automatic segmentation of vascular tree achieved an Area Under the Curve mean value of 0.77±0.07, with a min-max range of 0.57 - 0.87. Absolute operator agreement was higher over the segmented image (ICC= 0.96) compared to the video (ICC= 0.76) and the a broader field of view image (ICC= 0.92). Fractal Dimension computed on both manual segmented images (ground truths) and automatically showed a good correlation with the clinical score (0.85 and 0.75, respectively). Experimental analyses suggest that extracting the vascular tree from cine-angiography can substantially improve the reliability of visual assessment of vascular complexity in PAOD. Results also reveal the effectiveness of FD in evaluating complex vascular tree structures.
2022
Deep learning
Fractal dimension
Inter-class correlation coefficient
Peripheral arterial disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/81466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact