Objective: Structural abnormalities in thalami and basal ganglia, in particular the globus pallidus (GP), are a neuroimaging hallmark of hereditary aceruloplasminemia (HA), yet few functional imaging data exit in HA carriers. This study investigated the iron-related structural and functional abnormalities in an Italian HA family. Methods: Multimodal imaging was used including structural 3 T MRI, functional imaging (SPECT imaging with 123I-ioflupane (DAT-SPECT), cardiac 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, and 18F-fluorodeoxyglucose (18F-FDG)-PET imaging). In the proband, MRI and scintigraphic evaluations were performed at baseline, 2 and 4 years (structural imaging), and 2 years of follow-up period (functional imaging). Results: We investigated two cousins carrying a novel splicing homozygous mutation in intron 6 (IVS6 + 1 G > A) of CP gene. Interestingly, MRI features in both subjects were characterized by marked iron accumulation in the thalami and basal ganglia nuclei, while GP was not affected. MRI performed in the proband at 2 and 4 years of follow-up confirmed progressive neurodegeneration of the thalami and basal ganglia without the involvement of GP. Functional imaging showed reduced putaminal DAT uptake in both cousins, whereas cardiac MIBG and FDG uptakes performed in the proband were normal. Longitudinal scintigraphic investigations did not show significant changes over the time. Conclusions: For HA carriers, our findings demonstrate that GP was spared by iron accumulation over the time. The nigrostriatal presynaptic dopaminergic system was damaged while the cardiac sympathetic system remained longitudinally preserved, thus expanding the imaging features of this rare inherited disorder.
Aceruloplasminemia: a multimodal imaging study in an Italian family with a novel mutation
Salsone M.;Arabia G.;Annesi G.;Gagliardi M.;Nistico R.;Novellino F.;Quattrone A.;Quattrone A.
2022-01-01
Abstract
Objective: Structural abnormalities in thalami and basal ganglia, in particular the globus pallidus (GP), are a neuroimaging hallmark of hereditary aceruloplasminemia (HA), yet few functional imaging data exit in HA carriers. This study investigated the iron-related structural and functional abnormalities in an Italian HA family. Methods: Multimodal imaging was used including structural 3 T MRI, functional imaging (SPECT imaging with 123I-ioflupane (DAT-SPECT), cardiac 123I metaiodobenzylguanidine (123I-MIBG) scintigraphy, and 18F-fluorodeoxyglucose (18F-FDG)-PET imaging). In the proband, MRI and scintigraphic evaluations were performed at baseline, 2 and 4 years (structural imaging), and 2 years of follow-up period (functional imaging). Results: We investigated two cousins carrying a novel splicing homozygous mutation in intron 6 (IVS6 + 1 G > A) of CP gene. Interestingly, MRI features in both subjects were characterized by marked iron accumulation in the thalami and basal ganglia nuclei, while GP was not affected. MRI performed in the proband at 2 and 4 years of follow-up confirmed progressive neurodegeneration of the thalami and basal ganglia without the involvement of GP. Functional imaging showed reduced putaminal DAT uptake in both cousins, whereas cardiac MIBG and FDG uptakes performed in the proband were normal. Longitudinal scintigraphic investigations did not show significant changes over the time. Conclusions: For HA carriers, our findings demonstrate that GP was spared by iron accumulation over the time. The nigrostriatal presynaptic dopaminergic system was damaged while the cardiac sympathetic system remained longitudinally preserved, thus expanding the imaging features of this rare inherited disorder.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.