Epithelial ovarian carcinoma (EOC) is the most lethal gynecological tumor, that almost inevitably relapses and develops chemo-resistance. A better understanding of molecular events underlying the biological behavior of this tumor, as well as identification of new biomarkers and therapeutic targets are the prerequisite to improve its clinical management. ZNF521 gene amplifications are present in >6% of OCs and its overexpression is associated with poor prognosis, suggesting that it may play an important role in OC. Increased ZNF521 expression resulted in an enhancement of OC HeyA8 and ES-2 cell growth and motility. Analysis of RNA isolated from transduced cells by RNA-Seq and qRT-PCR revealed that several genes involved in growth, proliferation, migration and tumor invasiveness are differentially expressed following increased ZNF521 expression. The data illustrate a novel biological role of ZNF521 in OC that, thanks to the early and easy detection by RNA-Seq, can be used as biomarker for identification and treatment of OC patients.
Enhanced ZNF521 expression induces an aggressive phenotype in human ovarian carcinoma cell lines
Scicchitano, Stefania
;Montalcini, Ylenia;Lucchino, Valeria;Gigantino, Valerio;Chiarella, Emanuela;Weisz, Alessandro;Mesuraca, Maria
2022-01-01
Abstract
Epithelial ovarian carcinoma (EOC) is the most lethal gynecological tumor, that almost inevitably relapses and develops chemo-resistance. A better understanding of molecular events underlying the biological behavior of this tumor, as well as identification of new biomarkers and therapeutic targets are the prerequisite to improve its clinical management. ZNF521 gene amplifications are present in >6% of OCs and its overexpression is associated with poor prognosis, suggesting that it may play an important role in OC. Increased ZNF521 expression resulted in an enhancement of OC HeyA8 and ES-2 cell growth and motility. Analysis of RNA isolated from transduced cells by RNA-Seq and qRT-PCR revealed that several genes involved in growth, proliferation, migration and tumor invasiveness are differentially expressed following increased ZNF521 expression. The data illustrate a novel biological role of ZNF521 in OC that, thanks to the early and easy detection by RNA-Seq, can be used as biomarker for identification and treatment of OC patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.