Recent studies suggest a pathogenetic association between metabolic disturbances, including type 2 diabetes (T2DM), and cognitive decline and indicate that T2DM may represent a risk factor for Alzheimer’s disease (AD). There are a number of experimental studies presenting evidence that ranolazine, an antianginal drug, acts as a neuroprotective drug. The aim of the present study was to evaluate the effects of ranolazine on hippocampal neurodegeneration and astrocytes activation in a T2DM rat model. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ) injection. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine and NCD + Metformin. The presence of neurodegeneration was evaluated in the hippocampal cornus ammonis 1 (CA1) region by cresyl violet staining histological methods, while astrocyte activation was assessed by western blot analysis. Staining with cresyl violet highlighted a decrease in neuronal density and cell volume in the hippocampal CA1 area in diabetic HFD/STZ + Vehicle rats, while ranolazine and metformin both improved T2DM-induced neuronal loss and neuronal damage. Moreover, there was an increased expression of GFAP in the HFD/STZ + Vehicle group compared to the treated diabetic groups. In conclusion, in the present study, we obtained additional evidence supporting the potential use of ranolazine to counteract T2DM-associated cognitive decline.

Ranolazine Attenuates Brain Inflammation in a Rat Model of Type 2 Diabetes

Cassano V.;Tallarico M.;Armentaro G.;Leo A.;Citraro R.;Russo E.;De Sarro G.;Hribal M. L.;Sciacqua A.
2022-01-01

Abstract

Recent studies suggest a pathogenetic association between metabolic disturbances, including type 2 diabetes (T2DM), and cognitive decline and indicate that T2DM may represent a risk factor for Alzheimer’s disease (AD). There are a number of experimental studies presenting evidence that ranolazine, an antianginal drug, acts as a neuroprotective drug. The aim of the present study was to evaluate the effects of ranolazine on hippocampal neurodegeneration and astrocytes activation in a T2DM rat model. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ) injection. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine and NCD + Metformin. The presence of neurodegeneration was evaluated in the hippocampal cornus ammonis 1 (CA1) region by cresyl violet staining histological methods, while astrocyte activation was assessed by western blot analysis. Staining with cresyl violet highlighted a decrease in neuronal density and cell volume in the hippocampal CA1 area in diabetic HFD/STZ + Vehicle rats, while ranolazine and metformin both improved T2DM-induced neuronal loss and neuronal damage. Moreover, there was an increased expression of GFAP in the HFD/STZ + Vehicle group compared to the treated diabetic groups. In conclusion, in the present study, we obtained additional evidence supporting the potential use of ranolazine to counteract T2DM-associated cognitive decline.
2022
Alzheimer’s
neurodegeneration
ranolazine
type 2 diabetes mellitus
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/82325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact