Pathological accumulation of Aβ oligomers has been linked to neuronal networks hyperexcitability, potentially underpinned by glutamatergic AMPA receptors (AMPARs) dysfunction. We aimed to investigate whether the non-competitive block of AMPARs was able to counteract the alteration of hippocampal epileptic threshold, and of synaptic plasticity linked to Aβ oligomers accumulation, being this glutamate receptor a valuable specific therapeutic target. In this work, we showed that the non-competitive AMPARs antagonist perampanel (PER) which, per se, did not affect physiological synaptic transmission, was able to counteract Aβ-induced hyperexcitability. Moreover, AMPAR antagonism was able to counteract Aβ-induced hippocampal LTP impairment and hippocampal-based cognitive deficits in Aβ oligomers-injected mice, while retaining antiseizure efficacy. Beside this, AMPAR antagonism was also able to reduce the increased expression of proinflammatory cytokines in this mice model, also suggesting the presence of an anti-inflammatory activity. Thus, targeting AMPARs might be a valuable strategy to reduce both hippocampal networks hyperexcitability and synaptic plasticity deficits induced by Aβ oligomers accumulation.

Non-competitive AMPA glutamate receptors antagonism by perampanel as a strategy to counteract hippocampal hyper-excitability and cognitive deficits in cerebral amyloidosis

Tallarico M.;Mancini A.;De Caro C.;Citraro R.;De Sarro G.;Russo E.;Leo A.
;
2023-01-01

Abstract

Pathological accumulation of Aβ oligomers has been linked to neuronal networks hyperexcitability, potentially underpinned by glutamatergic AMPA receptors (AMPARs) dysfunction. We aimed to investigate whether the non-competitive block of AMPARs was able to counteract the alteration of hippocampal epileptic threshold, and of synaptic plasticity linked to Aβ oligomers accumulation, being this glutamate receptor a valuable specific therapeutic target. In this work, we showed that the non-competitive AMPARs antagonist perampanel (PER) which, per se, did not affect physiological synaptic transmission, was able to counteract Aβ-induced hyperexcitability. Moreover, AMPAR antagonism was able to counteract Aβ-induced hippocampal LTP impairment and hippocampal-based cognitive deficits in Aβ oligomers-injected mice, while retaining antiseizure efficacy. Beside this, AMPAR antagonism was also able to reduce the increased expression of proinflammatory cytokines in this mice model, also suggesting the presence of an anti-inflammatory activity. Thus, targeting AMPARs might be a valuable strategy to reduce both hippocampal networks hyperexcitability and synaptic plasticity deficits induced by Aβ oligomers accumulation.
2023
Alzheimer's disease
AMPAR antagonism
Aβ-oligomers
Epilepsy
Neuronal hyperexcitability
Perampanel
Synaptic plasticity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/82459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact