problem for environmental safety and programmes of monitoring and bioremediation are needed. Among the processes of bioremediation, the use of microbes to remove and degrade contaminants is considered a biotechnological approach to clean up polluted environments. Aim The aim of this study was to evaluate the ability of Serratia marcescens in Pb, Cd and Cr removal and the potential use of these bacteria in toxic metal bioremediation from polluted environments. Methods A short-term study (120 min) was carried out to study the bacterial growth in the presence of subinhibitory concentrations of each metal analysed and the kinetics of metal biosorption in S. marcescens strain. In addition, metal influence on the biosynthesis of the red pigment ‘prodigiosina’ by S. marcescens was monitored.Results The results obtained in this study show metals biosorption by S. marcescens (range: 0.0133–0.213 μg/g for Pb; 0.097–0.1853 μg/g for Cd; and 0.105–0.176 μg/g for Cr) and confirm the possible use of this bacterium to realize bioremediation processes, especially for Pb removal, and as a bioindicator of metal pollution

Possible use of Serratia marcescens in toxic metal biosorption (removal)

NACCARI C;
2012-01-01

Abstract

problem for environmental safety and programmes of monitoring and bioremediation are needed. Among the processes of bioremediation, the use of microbes to remove and degrade contaminants is considered a biotechnological approach to clean up polluted environments. Aim The aim of this study was to evaluate the ability of Serratia marcescens in Pb, Cd and Cr removal and the potential use of these bacteria in toxic metal bioremediation from polluted environments. Methods A short-term study (120 min) was carried out to study the bacterial growth in the presence of subinhibitory concentrations of each metal analysed and the kinetics of metal biosorption in S. marcescens strain. In addition, metal influence on the biosynthesis of the red pigment ‘prodigiosina’ by S. marcescens was monitored.Results The results obtained in this study show metals biosorption by S. marcescens (range: 0.0133–0.213 μg/g for Pb; 0.097–0.1853 μg/g for Cd; and 0.105–0.176 μg/g for Cr) and confirm the possible use of this bacterium to realize bioremediation processes, especially for Pb removal, and as a bioindicator of metal pollution
2012
Metal pollution . Serratia marcescens . Prodigiosin . Biosorption . Bioindicator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/83695
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact