The circadian rhythm regulates biological processes that occur within 24 h in living organisms. It plays a fundamental role in maintaining biological functions and responds to several inputs, including food intake, light/dark cycle, sleep/wake cycle, and physical activity. The circadian timing system comprises a central clock located in the suprachiasmatic nucleus (SCN) and tissue-specific clocks in peripheral tissues. Several studies show that the desynchronization of central and peripheral clocks is associated with an increased incidence of insulin resistance (IR) and related diseases. In this review, we discuss the current knowledge of molecular and cellular mechanisms underlying the impact of circadian clock dysregulation on insulin action. We focus our attention on two possible mediators of this interaction: the phosphatases belonging to the pleckstrin homology leucine-rich repeat protein phosphatase family (PHLPP) family and the deacetylase Sirtuin1. We believe that literature data, herein summarized, suggest that a thorough change of life habits, with the return to synchronized food intake, physical activity, and rest, would doubtless halt the vicious cycle linking IR to dysregulated circadian rhythms. However, since such a comprehensive change may be incompatible with the demand of modern society, clarifying the pathways involved may, nonetheless, contribute to the identification of therapeutic targets that may be exploited to cure or prevent IR-related diseases.

Circadian Clock Desynchronization and Insulin Resistance

Catalano, Federica;De Vito, Francesca;Cassano, Velia;Fiorentino, Teresa Vanessa;Sciacqua, Angela;Hribal, Marta Letizia
2022-01-01

Abstract

The circadian rhythm regulates biological processes that occur within 24 h in living organisms. It plays a fundamental role in maintaining biological functions and responds to several inputs, including food intake, light/dark cycle, sleep/wake cycle, and physical activity. The circadian timing system comprises a central clock located in the suprachiasmatic nucleus (SCN) and tissue-specific clocks in peripheral tissues. Several studies show that the desynchronization of central and peripheral clocks is associated with an increased incidence of insulin resistance (IR) and related diseases. In this review, we discuss the current knowledge of molecular and cellular mechanisms underlying the impact of circadian clock dysregulation on insulin action. We focus our attention on two possible mediators of this interaction: the phosphatases belonging to the pleckstrin homology leucine-rich repeat protein phosphatase family (PHLPP) family and the deacetylase Sirtuin1. We believe that literature data, herein summarized, suggest that a thorough change of life habits, with the return to synchronized food intake, physical activity, and rest, would doubtless halt the vicious cycle linking IR to dysregulated circadian rhythms. However, since such a comprehensive change may be incompatible with the demand of modern society, clarifying the pathways involved may, nonetheless, contribute to the identification of therapeutic targets that may be exploited to cure or prevent IR-related diseases.
2022
circadian clock
insulin sensitivity
insulin signaling
peripheral tissues
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/84879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact