Negative allosteric modulators (NAMs) of GluN2B-containing NMDARs provide pharmacological tools for the treatment of chronic neurodegenerative diseases. Novel NAMs have been designed on the basis of computational studies focused on the 'hit compound' 3. This series of indoles has been tested in competition assay. Compounds 16 and 17 were the most active ligands (IC50 values of 83 nM and 71 nM, respectively) and they showed a potency close to that of reference compounds ifenprodil (1, IC50 = 47 nM) and 3 (IC50 = 25 nM). Furthermore, docking studies have been performed for active ligand 16 and the results were in a good agreement with biological data. (C) 2016 Elsevier Ltd. All rights reserved.

Negative allosteric modulators (NAMs) of GluN2B-containing NMDARs provide pharmacological tools for the treatment of chronic neurodegenerative diseases. Novel NAMs have been designed on the basis of computational studies focused on the 'hit compound' 3. This series of indoles has been tested in competition assay. Compounds 16 and 17 were the most active ligands (IC50 values of 83 nM and 71 nM, respectively) and they showed a potency close to that of reference compounds ifenprodil (1, IC50 = 47 nM) and 3 (IC50 = 25 nM). Furthermore, docking studies have been performed for active ligand 16 and the results were in a good agreement with biological data. (C) 2016 Elsevier Ltd. All rights reserved.

Structure-guided design of new indoles as negative allosteric modulators (NAMs) of N-methyl-D-aspartate receptor (NMDAR) containing GluN2B subunit

Russo E;De Sarro G
2016-01-01

Abstract

Negative allosteric modulators (NAMs) of GluN2B-containing NMDARs provide pharmacological tools for the treatment of chronic neurodegenerative diseases. Novel NAMs have been designed on the basis of computational studies focused on the 'hit compound' 3. This series of indoles has been tested in competition assay. Compounds 16 and 17 were the most active ligands (IC50 values of 83 nM and 71 nM, respectively) and they showed a potency close to that of reference compounds ifenprodil (1, IC50 = 47 nM) and 3 (IC50 = 25 nM). Furthermore, docking studies have been performed for active ligand 16 and the results were in a good agreement with biological data. (C) 2016 Elsevier Ltd. All rights reserved.
2016
Negative allosteric modulators (NAMs) of GluN2B-containing NMDARs provide pharmacological tools for the treatment of chronic neurodegenerative diseases. Novel NAMs have been designed on the basis of computational studies focused on the 'hit compound' 3. This series of indoles has been tested in competition assay. Compounds 16 and 17 were the most active ligands (IC50 values of 83 nM and 71 nM, respectively) and they showed a potency close to that of reference compounds ifenprodil (1, IC50 = 47 nM) and 3 (IC50 = 25 nM). Furthermore, docking studies have been performed for active ligand 16 and the results were in a good agreement with biological data. (C) 2016 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/8504
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact