Although the concepts of somatic cell reprogramming and human-induced pluripotent stem cells (hiPSCs) generation have undergone several analyses to validate the usefulness of these cells in research and clinic, it remains still controversial whether the hiPSCs are equivalent to human embryonic stem cells (hESCs), pointing to the need of further characterization for a more comprehensive understanding of pluripotency. Most of the experimental evidence comes from the transcriptome analysis, while a little is available on protein data, and even less is known about the post-translational modifications. Here, we report a combined strategy of mass spectrometry and gene expression profiling for proteogenomic analysis of reprogrammed and embryonic stem cells. The data obtained through this integrated, multi-"omics" approach indicate that a small, but still significant, number of distinct pathways is enriched in reprogrammed versus embryonic stem cells, supporting the view that pluripotency is an extremely complex, multifaceted phenomenon, with peculiarities that are characteristic of each cell type.

Comprehensive proteogenomic analysis of human embryonic and induced pluripotent stem cells

Scalise, Stefania;Santamaria, Gianluca
2019-01-01

Abstract

Although the concepts of somatic cell reprogramming and human-induced pluripotent stem cells (hiPSCs) generation have undergone several analyses to validate the usefulness of these cells in research and clinic, it remains still controversial whether the hiPSCs are equivalent to human embryonic stem cells (hESCs), pointing to the need of further characterization for a more comprehensive understanding of pluripotency. Most of the experimental evidence comes from the transcriptome analysis, while a little is available on protein data, and even less is known about the post-translational modifications. Here, we report a combined strategy of mass spectrometry and gene expression profiling for proteogenomic analysis of reprogrammed and embryonic stem cells. The data obtained through this integrated, multi-"omics" approach indicate that a small, but still significant, number of distinct pathways is enriched in reprogrammed versus embryonic stem cells, supporting the view that pluripotency is an extremely complex, multifaceted phenomenon, with peculiarities that are characteristic of each cell type.
2019
Ingenuity Pathway Analysis (IPA)
human embryonic stem cells (hESCs)
human induced pluripotent stem cells (hiPSCs)
mass spectrometry
pluripotency
post-translational modifications
proteome
transcriptome
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/85359
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact