Background: Mitral valve failure can require repair or replacement. Replacement bioprosthetic valves are treated with glutaraldehyde prior to implantation. The aim of this study was to determine the changes in mechanical properties following glutaraldehyde fixation of mitral valve chordae. Methods: To investigate the impact of glutaraldehyde on mitral valve chordae, 24 basal chordae were dissected from four porcine hearts. Anterior and posterior basal (including strut) chordae were used. All 24 chordae were subjected to a sinusoidally varying load (mean level 2N, dynamic amplitude 2N) over a frequency range of 0.5-10 Hz before and after glutaraldehyde treatment. Results: The storage and loss modulus of all chordal types decreased following glutaraldehyde fixation. The storage modulus ranged from: 108 to 119 MPa before fixation and 67.3-87.4 MPa following fixation for basal chordae; 52.3-58.4 MPa before fixation and 47.9-53.5 MPa following fixation for strut chordae. Similarly, the loss modulus ranged from: 5.47 to 6.25 MPa before fixation and 3.63-4.94 MPa following fixation for basal chordae; 2.60-2.97 MPa before fixation and 2.31-2.93 MPa following fixation for strut chordae. Conclusion: The viscoelastic properties of mitral valve chordae are affected by glutaraldehyde fixation; in particular, the reduction in storage moduli decreased with an increase in chordal diameter.

Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae

Gramigna V.;
2018-01-01

Abstract

Background: Mitral valve failure can require repair or replacement. Replacement bioprosthetic valves are treated with glutaraldehyde prior to implantation. The aim of this study was to determine the changes in mechanical properties following glutaraldehyde fixation of mitral valve chordae. Methods: To investigate the impact of glutaraldehyde on mitral valve chordae, 24 basal chordae were dissected from four porcine hearts. Anterior and posterior basal (including strut) chordae were used. All 24 chordae were subjected to a sinusoidally varying load (mean level 2N, dynamic amplitude 2N) over a frequency range of 0.5-10 Hz before and after glutaraldehyde treatment. Results: The storage and loss modulus of all chordal types decreased following glutaraldehyde fixation. The storage modulus ranged from: 108 to 119 MPa before fixation and 67.3-87.4 MPa following fixation for basal chordae; 52.3-58.4 MPa before fixation and 47.9-53.5 MPa following fixation for strut chordae. Similarly, the loss modulus ranged from: 5.47 to 6.25 MPa before fixation and 3.63-4.94 MPa following fixation for basal chordae; 2.60-2.97 MPa before fixation and 2.31-2.93 MPa following fixation for strut chordae. Conclusion: The viscoelastic properties of mitral valve chordae are affected by glutaraldehyde fixation; in particular, the reduction in storage moduli decreased with an increase in chordal diameter.
2018
Chordae tendineae
Dynamic mechanical analysis
Glutaraldehyde
Mechanical properties
Mitral valve
Viscoelasticity
Animals
Chordae Tendineae
Elasticity
Glutaral
Swine
Viscosity
Mitral Valve
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12317/85526
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact