The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the need for innovative aids, devices, and assistive technologies to enable people with severe disabilities to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with significant health challenges to improve their independence, facilitate participation in activities, thus enhancing overall well-being and preventing impairments. This systematic review provides state-of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to wheelchair control and movement. It presents a thorough examination of the different studies conducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and classification techniques used as well as on wheelchair components and performance evaluation. The results provided in this paper could highlight the limitations of current biomedical instrumentations applied to people with severe disabilities and bring focus to innovative research topics.
Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review
Palumbo, Arrigo;Gramigna, Vera;Calabrese, Barbara;Ielpo, Nicola
2021-01-01
Abstract
The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the need for innovative aids, devices, and assistive technologies to enable people with severe disabilities to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with significant health challenges to improve their independence, facilitate participation in activities, thus enhancing overall well-being and preventing impairments. This systematic review provides state-of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to wheelchair control and movement. It presents a thorough examination of the different studies conducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and classification techniques used as well as on wheelchair components and performance evaluation. The results provided in this paper could highlight the limitations of current biomedical instrumentations applied to people with severe disabilities and bring focus to innovative research topics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.